User Generated Education

Education as it should be – passion-based.

Posts Tagged ‘STEAM

Toy Take Apart and Repurposing

with 2 comments

Toy take apart and hacking is a high engagement activity that works for kids of all ages, including adults who haven’t lost their sense of kid, and both genders. I have done it multiple times during my summer maker camp for elementary level kids, with my gifted elementary students, and at conferences as part of teacher professional development.

Here is a description of this activity from the tinkering studio at the Exploratorium:

Do you ever wonder what’s inside your toys? You’ll make some exciting and surprising discoveries about their inner parts when you don some safety goggles and get started dissecting your old stuffed animal, remote controlled car, or singing Santa. Use screwdrivers, seam rippers, scissors, and saws to remove your toy’s insides. Check out the mechanisms, circuit boards, computer chips, lights, and wires you find inside. Once you’ve fully dissected your toy, you can use the toy’s parts, your tools, and your imagination to create a new original plaything.  (https://tinkering.exploratorium.edu/toy-take-apart)

Standards Addressed

Toy take apart and hacking addresses a lot of cross curricular standards including:

  • Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. (NGSS)
  • Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. (NGSS)
  • Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. (NGSS)
  • Report on a topic or text, tell a story, or recount an experience in an organized manner, using appropriate facts and relevant, descriptive details to support main ideas or themes; speak clearly at an understandable pace. (ELA CCSS)
  • Write informative/explanatory texts to examine a topic and convey ideas and information clearly. (ELA CCSS)
  • Write narratives to develop real or imagined experiences or events using effective technique, descriptive details, and clear event sequences. (ELA CCSS)
  • Elaborate, refine, analyze and evaluate their own ideas in order to improve and maximize creative efforts. (21st Century Skills)
  • Act on creative ideas to make a tangible and useful contribution to the field in which the innovation will occur. (21st Century Skills)
  • Demonstrate originality and inventiveness in work and understand the real world limits to adopting new ideas. (21st Century Skills)
  • View failure as an opportunity to learn; understand that creativity and innovation is a long-term, cyclical process of small successes and frequent mistakes. (21st Century Skills)
  • Solve different kinds of non-familiar problems in both conventional and innovative ways. (21st Century Skills)

Frontloading and Framing the Experience

(For background information about this idea, see Don’t Leave Learning Up to Chance: Framing and Reflection)

To help frontload and frame this activity, participants are given the following scenario:

You have been hired to create the newest, most exciting handheld game to hit the market in years. You can decide the type of game, the population for whom you want to design it for – age range and gender, the goal of the game, the rules, any functions. The sky is the limit but there is one caveat – you need to recycle parts from old handheld games, ones made a decade or two ago, to create your prototype. Here are some questions to consider as you make your prototype –

  • How will you decide what to make?
  • What factors do you need to consider as you make your game?
  • What actions can you take if you get stuck using the tools? Coming up with ideas?
  • How can you ask for help as well as support others during the toy take apart and hacking?

How-To

I like to use the older handheld games as they contain lots of interesting parts and can be bought fairly cheaply in lots through ebay. First, the toys are passed around so participants can examine and learn about them.

Participants select the toy they want to take apart. Using the various screw drivers, scissors, wire cutters, and hammers that have been laid out on a work table, the toys are taken apart as much as they can be taken apart.

IMG_7432IMG_7426

After the participants fully take apart their toys, they are asked to create a new game out of their parts and parts discarded by the other participants. I use hot glue guns but soldering of parts can be done, too.

The criteria that I give to the participants for their game creation includes:

  • The creation must be a new game – one that the participant hasn’t heard of nor played.
  • The parts need to be used creatively – not the same way they were used in the original game.
  • The specifications for the game need to be developed and written as a poster are –
    • Name of the Game
    • Age Level Recommendations
    • The Rules
    • How to Play

IMG_8922IMG_9207

Participants then share their designs with the rest of the group.

Reflection

(For background information about this idea, see Don’t Leave Learning Up to Chance: Framing and Reflection)

After finishing their projects and sharing, participants can reflect on their experiences through:

Through a conversation with other participants; a presentation using Google Slides, Prezi, or Adobe Spark; or a blog post – your choice, address the following questions –

  • Describe the game you made – why did you make that type of game?
  • What changes did you make to your original design? Why?
  • Did you get stuck at any point during the activity? Taking apart the toy? Coming up with a design? Using the tools? Making your game? If so, how did you get unstuck?
  • What will you do the same/differently if you do a similar activity in the future?

More Information

For more information on toy take apart and hacking,  visit http://www.makereducation.com/toy-take-apart.html.

A slideshow of participant engagement in this activity . . .

This slideshow requires JavaScript.

Written by Jackie Gerstein, Ed.D.

April 8, 2017 at 8:13 pm

A Framework for Implementing Maker Education Activities Presentation

leave a comment »

I am facilitating two mini-workshops at ASCD Empower 17 and the 2017 ASCD Conference on Teaching Excellence on using a framework for implementating maker education activities. The description for my session is:

Providing a framework for maker activities helps ensure that their use is intentional and that meaningful learning is extracted from these experiences. The educator, using such a framework, becomes proactive in framing or frontloading the maker experiences and in debriefing or processing them to increase the chances that learning occurs. Framing or frontloading is making clear the purpose of an activity prior to actually doing it; it helps to set purpose and intention for the activity. Reflecting on the maker activities can occur through a variety of methods: talking, writing, sketching, and using technology such as Web 2.0 tools and social media. During this interactive presentation, participants will experience this framework through maker activity that is introduced through framing or frontloading and then by directly using reflection techniques upon completion of the activity.

The slides for my session:

Written by Jackie Gerstein, Ed.D.

March 24, 2017 at 4:46 pm

Teacher PD: Purposeful Tinkering and Application

leave a comment »

As a preface to this post, my belief is that deep learning does not occur through sit and get. Deep learning occurs through experiential, authentic, interactive, collaborative instructional processes.  If deep learning is desired for teacher professional development, then it should reflect best practices for teaching and learning.

Professional learning must focus on creating safe and productive spaces for teachers to begin planning and experimenting with the concepts that have been shared. Too often, facilitation centers on giving strategies to teachers rather than coaching them on how to deliver the strategies to students. As a result, teachers leave the session with a toolbox of ideas that are never implemented. Instead, more professional learning time should be spent helping teachers plan, develop materials, and practice delivering the strategies with colleague support. (http://inservice.ascd.org/personalized-professional-development-moving-from-sit-and-get-to-stand-and-deliver/)

When I design teacher PD-related workshops, I am guided by the following principles:

  1. Teachers need time to tinker, play, and experiment with instructional materials and resources especially with new forms of teaching/learning technologies.
  2. For skills development, such as using new technologies, scaffolding and increasing complexity should be a strong component of the PD process.
  3. Teachers need to be offered lots of instructional suggestions and resources so they can tailor their PD learning to their own teaching environments.
  4. Intentional and active reflection and goal setting should be included to increase the chances of transfer of learning.

guiding-princip_7056696_d17d679a92cec561ad2afea419d9191e7e92edd1

Tinkering With Instructional Materials

Teachers and librarians, like their students, need hands-on experience with tools and with playing to learn as that helps them build creative confidence. (https://www.edutopia.org/blog/crafting-professional-development-maker-educators-colleen-graves)

Teachers, during PD, should be provided with time, resources, and materials with which to play. It sets the expectation that they will be active agents of their own learning. It gives them the message it is okay to play and experiment with the materials; that tinkering is often needed as a part of learning new skills.

Scaffolding and Introducing Complexity

As teachers, we have come to learn over the years that we should never expect our students to fully understand a new idea without some form of structured support framework, or scaffolding as the current buzzword defines it.  The same, of course, should be the case in supporting learning for our fellow teachers. (http://mgleeson.edublogs.org/2012/03/10/when-it-comes-to-technology-teachers-need-as-much-scaffolding-as-students/)

Once teachers get familiar with instructional materials and resources through tinkering, they should be guided through a series of skills that are increasingly complex; that honor the process of scaffolding.  As with tinkering, this should be a hands-on process where teachers can try out these skills with facilitator and colleague support and guidance. As confidence is built through success with basic skills and strategies, more complex skills and strategies will be more welcomed by teachers.

Lots of Instructional Strategies and Resources

Even with fairly homogeneous groups of teachers, their teaching and learning needs can be vastly different. They often teach different groups of students, different grades, different content areas. They often have different backgrounds, years of experience, and personal and professional interests. As such, they should be provided with lots of instructional strategies and resources to help them make direct connections to their own teaching environments. Given the plethora and free resources that can be found online, curated aggregates of resources can be provided to the teachers. Time should be allotted during the PD training for them to examine and discuss these resources with their colleagues.

Transfer of Learning Through Reflection and Goal Setting

Reflection is essential for learning. In order to “make meaning” of an experience, the learner must have an opportunity to reflect on or process the experience. To help ensure that program participants transfer learning and training experiences into real-world applications, we must be intentional about both engaging the learners and creating opportunity for meaningful reflection. (https://www.e-volunteerism.com/volume-xvi-issue-1-october-january-2016/training-designs/enhance_learning)

Facilitators of teacher professional development need to be more intentional to include specific strategies to help insure that learning is transferred in teachers’ educational environments. Reflection and goal setting, two powerful transfer of learning strategies, should be built into teacher professional development.

A Recent Example

Because of on my request, my district gifted education supervisor purchased 3 sets/3 dozen Spheros. As a follow-up, he asked me to facilitate a teacher professional development workshop on their use.

The schedule for this afternoon workshop was:

  1. Short Introductory video about Sphero in schools: Gain Attention and Provide a Context
  2. Orienting and Simple Driving the Sphero: Tinkering
  3. Using the Draw Program: Tinkering
  4. Video Tutorial and Practice of Simple Block Programming: Increasing Complexity
  5. Build a Project-Chariot or Tug Boat: Increasing Complexity and Instructional Resources
  6. Review Curricula for Use in the Classroom: Instructional Resources and Transfer of Learning
  7. Final Reflections – Sharing about one’s own processes and possible applications in one’s own classroom: Transfer of Learning Through Reflection and Goal Setting
  8. Email Exchange – for sharing how the use of Spheros are being implemented in the classroom: Transfer of Learning

The slide presentation used and shared with this group of teachers:


Workshop photos showing teacher engagement:

This slideshow requires JavaScript.

Design Challenge

leave a comment »

This year I have been focusing on design challenges and design thinking with my gifted elementary students, grades 2nd through 6th. Last semester I introduced a series of activities to have them explore, learn about, and interact with design thinking principles and strategies. For a description of those activities, see https://usergeneratededucation.wordpress.com/2016/09/25/introducing-design-thinking-to-elementary-learners/

To re-introduce design thinking again for this spring semester, this week I asked them to do the Extraordinaire Design Studio:

The Extraordinaires® Design Studio is a powerful learning tool, that introduces children to the world of design, teaching them the foundations of design in a fun and engaging way. Your clients The Extraordinaires® are over the top characters with extraordinary needs, it’s the job of your student to design the inventions they need to fit their worlds. Choose your design client, from a rap star to a vampire teen or even an evil genius plotting in his lair. Look at the exceptionally detailed illustrated character cards to learn more about them, their world and their needs. Once you’ve chosen your Extraordinaire, pick a design project. It could be a communications device for a soldier or a drinks carrier for a circus acrobat. https://www.extraordinaires.com/shop/the-extraordinaires-design-studio-deluxe

To play, the character cards are laid out and then the inventions or gadgets are randomly placed on the character cards. The learners can then select which character/invention pair for which they would like to design.

img_7444img_7438

After drawing out and labeling their inventions and gadgets, they took pictures of them and posted their images along with a short description on a blog post. Some example learner work follows:

Hoverchair 1.0

TJ selected a hover chair for an astronaut.

wm1c3dlvto2omlmtmnog_7a1ddb70-4b34-4bed-be97-4af22de0ccb82017-01-15_1514

Le Phone

Sebastian selected a communication device for a fairy.

img_74462017-01-15_1505

Bearded Flask

Will selected a drink carrier for a wizard.

img_74472017-01-15_1128

This activity was a high interest, high engagement, high yield instructional task. Some learners had a little trouble getting started but once they did, their designs and inventions were fantastic. I think the fanciful nature of the cards helped engagement. The company has a free app to go along with their set for the designs to be uploaded and described. This app did not do what was promised so I cannot recommend its use.

What I think this type of design challenge does especially well is to introduce the idea that design thinking often encompasses designing a specific type of product for a specific type of client. It does a good job of introducing learners to the core of the design thinking process:

The Design Thinking process first defines the problem and then implements the solutions, always with the needs of the user demographic at the core of concept development. (http://dschool.stanford.edu/redesigningtheater/the-design-thinking-process/)

This set does cost some money but there are other free options:

  • Maker Education Card Game that I created
  • Destination Imagination Instant Challenge

Maker Education Card Game

This game, which I first introduced in the Maker Education Card Game, is a card game that ends with the makers making something based on selected cards. Each maker picks a card from each of the three categories:

  1. The Thing or Process
  2. The Product
  3. The Population.

For example, a maker may choose, Create a Blueprint from The Thing or Process category; a New Toy from the Product category; and Adults from the population category meaning the maker would create a blueprint for a new toy for adults. The educator and makers can choose whether it is a “blind” pick or one in which the makers see their options. (Note – I would love to increase options in all categories. If you have additional card ideas, please leave them in the comments section).

makercardgame.jpg

makercardgame2

makercardgame3.jpg


Destination Imagination Instant Challenges

Destination Imagination offers similar design challenges

The Destination Imagination program is a fun, hands-on system of learning that fosters students’ creativity, courage and curiosity through open-ended academic Challenges in the fields of STEM (science, technology, engineering and mathematics), fine arts and service learning. Our participants learn patience, flexibility, persistence, ethics, respect for others and their ideas, and the collaborative problem solving process. https://www.destinationimagination.org/mission-vision/

Combination Challenge

Randomly choose one or more items from A and one or more items from B, C, D or E and get busy.

2017-01-14_1338

Roll-A- Challenge

destination_imagination_roll-a-challenge1

Written by Jackie Gerstein, Ed.D.

January 15, 2017 at 8:10 pm

Simple and Rube Goldberg Machines: A Maker Education, STEAM Lesson

leave a comment »

Recently I facilitated a simple-machines-leading-into-Rube-Goldberg-machines lesson with my gifted elementary students.

As I’ve discussed in past blog posts, I use several criteria to guide my lesson design:

  • Instructional challenges are hands-on and naturally engaging for learners.
  • There is a game-like atmosphere. There are elements of play, leveling up, and a sense of mastery or achievement during the instructional activities.
  • The challenges are designed to be novel and create excitement and joy for learners.
  • There is a healthy competition where the kids have to compete against one another.
  • Learners don’t need to be graded about their performances as built-in consequences are natural.
  • There is a natural building of social emotional skills – tolerance for frustration, expression of needs, working as a team.
  • Lessons are interdisciplinary (like life) where multiple, cross-curricular content areas are integrated into the instructional activities.
  • Lessons are designed to get learners interested in and excited about a broad  array of topics especially in the areas of science, engineering, math, language arts, and the arts.

The lesson activities and sequence went as follows . . .

Simple Machines

img_6587img_6584

  • To conclude the simple machines component, learners were taught about Haikus and asked to write Haikus about simple machines to be posted on their Kidblogs.

2016-11-28_19262016-11-28_1928

Rube Goldberg Machines

  • Learners were shown several Rube Goldberg machines posted on Youtube.

img_6600img_6575

  • Learners were given a worksheet that contained several examples of Rube Goldberg Machines and asked to sketch their own cartoon versions.

This slideshow requires JavaScript.

Written by Jackie Gerstein, Ed.D.

November 29, 2016 at 5:07 am

Halloween Wars: An Interdisciplinary Lesson with a STEM, STEAM, Maker Education Focus

leave a comment »

For Halloween 2016, I did a version of Halloween Wars (a Food Network show) with my two classes of gifted elementary learners. I am sharing this lesson through my blog post as it reinforces how I approach lesson planning and teaching.

Background Information

Principles that drive my instructional approach. regardless of theme, include:

  • Instructional challenges are hands-on and naturally engaging for learners.
  • There is a game-like atmosphere. There are elements of play, leveling up, and a sense of mastery or achievement during the instructional activities.
  • The challenges are designed to be novel and create excitement and joy for learners.
  • There is a healthy competition where the kids have to compete against one another.
  • Learners don’t need to be graded about their performances as built-in consequences are natural.
  • There is a natural building of social emotional skills – tolerance for frustration, expression of needs, working as a team.
  • Lessons are interdisciplinary (like life) where multiple, cross-curricular content areas are integrated into the instructional activities.

These have been further discussed in A Model of Good Teaching?

goodteaching

Halloween Wars Lesson

For this Halloween Wars lesson, the goals included the following:

  • To work in a small group to create a Halloween scene using food items, cooked goods, LED lights, and miscellaneous materials.
  • To work as a small group to craft a story about their scene.
  • To introduce and reinforce ideas, concepts, and skills associated with maker education, STEM, and STEM.

Standards addressed during this lesson included:

  • Generate and conceptualize artistic ideas and work. (National Core Arts Standards)
  • Exercise flexibility and willingness to be helpful in making necessary compromises to accomplish a common goal; and assume shared responsibility for collaborative work, and value the individual contributions made by each team member. (21st Century Skills)
  • Apply scientific ideas to design, test,and refine a device that converts energy from one form to another. (Next Generation Science Standards)
  • Solve problems involving measurement and conversion of measurements. (CCSS.Math)
  • Write narratives to develop real or imagined experiences or events using effective technique, descriptive details, and clear event sequences. (CCSS.ELA-Literacy.W.5.3)
  • Publish or present content that customizes the message and medium for their intended audiences. (ISTE NETS for Students)

Time Frame: 3 to 4 hours

Procedures:

  • Learners were introduced to the lesson through the following presentation –

  • Learners were split into groups of 3 or 4 members, shown their materials, asked to come up with a team name, and sketch their designs.

img_6414img_6473

  • In their small groups, learners needed to work together cooperatively to make their display scenes using the materials provided.

img_6485img_6483

  • Learners made sugar cookies using a recipe projected on the Smartboard. They were asked to cut the recipe in half reinforcing math skills.

img_6437img_6443

  • LED lights, which learners connected to coin batteries, were placed decorated ping-pong balls and their carved pumpkin.

img_6453img_6501

img_6454

  • Finally, learners, in their small groups, worked together on a shared Google doc to compose their story. The story was displayed on the Smartboard and read aloud. One member made editing changes to grammar and spelling based on suggestions by their classmates. (This strategy is further discussed in Teaching Grammar in Context.) Here is one student group’s example:

Written by Jackie Gerstein, Ed.D.

October 31, 2016 at 12:11 am

Introducing Design Thinking to Elementary Learners

with 2 comments

Design thinking is an approach to learning that includes considering real-world problems, research, analysis, conceiving original ideas, lots of experimentation, and sometimes building things by hand. The projects teach students how to make a stable product, use tools, think about the needs of another, solve challenges, overcome setbacks and stay motivated on a long-term problem. The projects also teach students to build on the ideas of others, vet sources, generate questions, deeply analyze topics, and think creatively and analytically. Many of those same qualities are goals of the Common Core State Standards. (What Does ‘Design Thinking’ Look Like in School?)

I use the following activities to introduce elementary students to the design thinking process. The ultimate goal is for the learners to work on their own, self-selected problems in which they will apply the design thinking.

Introducing the general design process to elementary student occurs through showing the following video about the engineering process:

The Task: Build the Highest Tower

The Goal

The goal of this activity is to have learners practice a simple version of the engineering design process.

slide_10

Source: http://slideplayer.com/slide/9058715/

The Task

In teams of 3 to 4 members, learners are asked to build the highest tower out of 50 small marshmallows and 50 spaghetti noodles.

The Process

As a team, ask learners to sketch out possible solutions

Design thinking requires that no matter how obvious the solution may seem, many solutions be created for consideration. And created in a way that allows them to be judged equally as possible answers. Looking at a problem from more than one perspective always yields richer results. (Design thinking… what is that?)

img_5437img_5462

Prototype and test ideas

After brainstorming and sketching possible designs, learners begin the process of building this spaghetti-marshmallow towers.

img_5440img_5453

Revisit the design process

After some time prototyping, a time-out is called so learners can reflect on what is working and not working. Learners are encouraged to see what the other groups have created to spark new ideas.

Design thinking allows their potential to be realized by creating an environment conducive to growth and experimentation, and the making of mistakes in order to achieve out of the ordinary results. At this stage many times options will need to be combined and smaller ideas integrated into the selected schemes that make it through. (Design thinking… what is that?)

Return to the building and testing process

Next Step: Introduction to Empathy

As a design thinker, the problems you are trying to solve are rarely your own—they are those of a particular group of people; in order to design for them, you must gain empathy for who they are and what is important to them. As a design thinker, the problems you are trying to solve are rarely your own—they are those of a particular group of people; in order to design for them, you must gain empathy for who they are and what is important to them. (from the d-school)

The second part of the introducing elementary-level learners to the design process is introducing them to empathy and its connection to the design process.

The Goal

To have learners discover and explore the elements of empathy as it relates to design.

The Process

Introduction to Empathy

For younger kids (but even the 5th and 6th graders seemed to enjoy it):

Warm-Up: Great Egg Drop

Preparation and introduction:

Learners are asked to draw a face on an egg and are given the following directions: “Pretend the egg is alive – has thoughts, feelings, and opinions. Your job is to use the straws to create a protective covering for the egg so it will not crack when dropped from a 10 foot height. Address the following questions prior to building your egg structure:

  • What do you think your egg is feeling about his or her upcoming drop?
  • What do you need to make your egg’s journey less stressful?
  • What can you do to reassure your egg that everything will work out okay?
  • What forces do you need to consider in order to keep your egg safe? Consider gravity, rate of descent, impact.

Example Responses from a 6th grade group:

2016-09-28_1905

The Task

To begin, assemble groups of 4 or 5 and give each group various materials for building (e.g. 5-20 straws, a roll of masking tape, one fresh egg, newspaper, etc.)  Instruct the participants and give them a set amount of time (e.g. 30 minutes) to complete building a structure, with the egg inside in which the structures are dropped from at least 10 feet in elevation and then inspected to see if the eggs survived. The winners are the groups that were successful in protecting the egg. (http://eggdropproject.org/ and  http://www.group-games.com/team-building/great-egg-drop.html)

img_5646img_5713

Delving Deeper: An Environment for a Gamibot

Lead learners through the following steps:

img_5723img_5731

  • Develop the Backstory for the Gamibot: Report via a Blog Post or Voki
  • Create an Environment for the Gamibot Out of Natural and Art Materials. Make sure it fits your Gamibot’s backstory creating an environment that is tailored for your Gamibot. Be ready to explain why it fits your Gamibot.

2016-09-28_1947

2016-09-28_1941

Squishy Circuits: Designing for a Human Being

The Goal

To put everything together by creating a design for another human being.

The Task

Learners design a squishy circuit product based on the specifications given to them by a classmate – the client from all of the available colors of Play-Doh (conductive clay), modeling clay (insulating clay), and LED lights.

The Process

Lead learners through the following steps:

img_5914IMG_5916.jpg

  • As partners, decide who will be the designer and who will have a product designed for him or her – the client.
  • As a designer, find out the following from the client:
    • What do you want me to build?
    • What size do you want it to be? It needs to be scaled in some way. (Note: learners are given graph flip chart paper with 1″ squares and taught about scale, e.g., 1″ = 1′, 1″ = 2′, etc.)
    • What color Play-Doh? Modeling clay? LED lights.
  • Construct the design while your client gives you feedback. The client is not permitted to touch the Squishy Circuit during the design process.
  • After completion, roles are switched.

2016-10-09_1636

Written by Jackie Gerstein, Ed.D.

September 25, 2016 at 2:30 pm

%d bloggers like this: