User Generated Education

Education as it should be – passion-based.

Posts Tagged ‘maker education

Gingerbread House Making: A Fun and Engaging Cross-Curricular Lesson

with 2 comments

I believe that educators can be intentional in setting up environments where learners’ propensity to create flourishes. Some elements that can assist with this kind of unbridled making and creating include:

  • Open ended projects that promote self-directed differentiation and personalization.
  • Choice of projects, methods, materials.
  • Some structure but lots of room for a personal touch; lots of room for creativity.
  • Educators letting go of expectations what the final project should look like.
  • Focus on the processes of learning.
  • Focus on the social emotional aspects of learning – collaboration, persistence, acceptance of failure.
  • Acceptance of a learner’s projects based on their own criteria of excellence rather than of the educator’s.
  • Reflection is built into the process so learners can revisit their projects with a critical eye.

conditions-for-creating1 (1)

This past week I did a gingerbread house making activity (described below) that included math and language arts connections with my two groups of gifted 3rd through 6th graders. It met all of these criteria and resulted in 100% engagement – lots of fun for the students.

When I talk about making in the classroom with teachers, I often say it takes a lot of preparation time but then the students end up working harder than the teacher during class time – which I believe should always be the case. This activity took quite a bit of preparation plus I ended up spending about $50 out-of-pocket money for the supplies. For me, though, it was worth it as I got to see my students experience such joy and excitement creating their gingerbread houses along with joy in doing the math and language arts activities I built into the lesson.

The Gingerbread House Lesson

List of Activities

As a cross-curricular unit, this lesson addressed standards in language arts, math, science and the arts. The general lesson list of activities included:

  1. Showing students the story of The Gingerbread Man.
  2. Asking students to write a story that features a gingerbread house.
  3. Showing students a video about how to make a simple gingerbread house with graham crackers.
  4. Asking students to create a blueprint of their gingerbread house including estimates of their perimeters and area. This necessitated me reviewing how to calculate these.
  5. Having students create their own royal icing from powdered sugar and meringue power – doubling the recipe to include more math calculations.
  6. Giving students lots of time to make their gingerbread houses.

Standards Addressed

Language Arts Standards

  • Write narratives to develop real or imagined experiences or events using effective technique, descriptive details, and clear event sequences.
  • Use narrative techniques, such as dialogue, description, and pacing, to develop experiences and events or show the responses of characters to situations.

Math Standard

  • Apply the area and perimeter formulas for rectangles in real world and mathematical problems.

Next Generation Science Standard

  • Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Art Standards

  • Anchor Standard #1. Generate and conceptualize artistic ideas and work.
  • Anchor Standard #2. Organize and develop artistic ideas and work.
  • Anchor Standard #3. Refine and complete artistic work.

Social Emotional Learning Standards

  • Student demonstrates ability to manage emotions constructively. “I can appropriately handle my feelings.”
  • Student demonstrates ability to set and achieve goals. “I can set and achieve goals that will make me more successful.”

Materials

  • computers access (to write their stories)
  • graph paper
  • tape measures
  • markers or colored pencils of different colors
  • graham crackers ( a lot – I ran short)
  • royal icing: confectionary sugar and meringue (see recipe at http://www.inkatrinaskitchen.com/small-batch-royal-icing/)
  • electric hand mixer
  • gum drops
  • pretzels
  • candy canes
  • skittles or m&m’s
  • mini-marshmallows

Activity Details

Write a Story About a Gingerbread House

This part of the lesson was introduced to students by showing them the story of The Gingerbread House to show them what was possible for a creative story.

They then wrote a story about a gingerbread house. I have an Orthodox Jew in one of my classes so I kept it general rather than emphasizing a Christmas theme. Here is an example story:


Creating Blueprints of the Gingerbread Houses with the Perimeter and Area

Students were shown the following video to help them learn techniques for building their gingerbread houses and to get inspired for the type of gingerbread houses they wanted to make.

We then reviewed the formulas for estimating perimeter and area. As part of their blueprints, they included these estimates using one color marker for the perimeter and one for the area. They were given the option to use the squares on the graph paper or to use the tape measures to figure out their perimeter and area.

IMG_2988IMG_2990

Making Their Gingerbread Houses

Then came the gingerbread house making time. Students were split into groups of three and provided with the recipe for royal icing which they had to double (more math!) to have enough for the three of them. Also on their respective tables were food items for their gingerbread houses: graham crackers, gum drops, candy canes, skittles, pretzels, mini-marshmallows.

As I mentioned above, there was 100% of engagement by the students as evidenced in these photos.

This slideshow requires JavaScript.

The only change to this lesson that I would implement when I do it again (and I am definitely doing it again), would be more graham crackers and more time to make them.

Written by Jackie Gerstein, Ed.D.

December 8, 2018 at 6:09 pm

Day of the Dead (Dia de los Muertos) Displays: A Maker Education Project

with one comment

IMG_2626

I have lived in Santa Fe, New Mexico for a few decades. One of my favorite things about living here is that my town celebrates and embraces Hispanic and Mexican cultural traditions. I have the privilege of working with gifted kids at two elementary schools with over 80% Hispanic students. For the past two years, I did Halloween Wars – based off of the Food Channel show. See Halloween Wars: An Interdisciplinary Lesson with a STEM, STEAM, Maker Education Focus for more about this. Because of the cultural heritage of my students and because I find the Day of the Dead holiday so intriguing and beautiful (the movie, Coco, helped bring its beauty to the masses), I decided to focus on having the students create Dia de los Muertos displays this year.

Standards Addressed

21st Century Skills

  • Using 21st century skills to understand and address global issues
  • Learning from and working collaboratively with individuals representing diverse cultures, religions and lifestyles in a spirit of mutual respect and open dialogue in personal, work and community contexts
  • Understanding  other nations and cultures, including the use of non-English languages
  • Create new and worthwhile ideas (both incremental and radical concepts)
  • Elaborate, refine, analyze and evaluate their own ideas in order to improve and maximize creative efforts
  • Create new and worthwhile ideas (both incremental and radical concepts)
  • Elaborate, refine, analyze and evaluate their own ideas in order to improve and maximize creative efforts

Next Generation Science Standards

  • Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
  • Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
  • Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Common Core State Standards – ELA

  • Write narratives to develop real or imagined experiences or events using effective technique, relevant descriptive details, and well-structured event sequences.

Getting Started – Gaining Attention

To introduce and show students the traditions related to Day of the Dead, they are shown the following videos:

. . . as well as given time to explore the Smithsonian Latino Center’s Theater of the Dead – http://latino.si.edu/dayofthedead/ which includes an interactive element to build their own alter or Ofrenda.

 

Writing a Story About Day of the Dead

Students write a story with a Day of the Dead theme. They are given the option to write it alone or with a partner. Here is an example from one of my 6th grade students:

 

Artifacts for the Day of the Dead Displays

Students make the following artifacts and then, in small groups of three students, decide if and how they want to use them in their Day of the Dead displays to reflect the stories they wrote.

Decorated Skulls with Paper Circuits for Eyes

Materials: skull outline and parallel circuit outline (one for each student), 5MM LED lights, copper tape, coin batteries, transparent tape, markers.

Students decorate their paper skulls and then make parallel paper circuits to light up the eyes of these skulls. I found a template of a skeleton skull online. I printed these out – one for each student. I then made an outline of a parallel circuit so that when connected and joined with the top part, the LEDs would show up as pupils of the decorated skull – see below.

IMG_2412.jpgIMG_2416

Students first cut out and decorate their skulls with markers. Images of decorated Day of the Dead skulls can be projected via a whiteboard so students can see examples. They then trace their cut out skulls onto the paper circuits template and cut that out. The bottom piece, containing the parallel circuit design, is then wired with the copper tape. The shorter copper tape is taped down from the battery placeholder to the end of its outline, so that the coin battery can be placed on top of that. For the longer piece of copper tape, about 1.5 inches is left at the end near the battery. This extra is folded onto itself so that after the battery is in place, this part of the copper tape can be taped on top of the battery. Having a folded over end piece makes it more manageable. Students should be reminded how to find the polarities of both the LEDs (the longer leg is positive) and the coin battery (it has a + on the top – that side with a little bit larger diameter). Students then tape their batteries and LEDs in place insuring that the positive legs of the LED lead to positive side of the battery and visa-versa. For more about paper circuits, see https://www.makerspaces.com/paper-circuits/. The LEDs are then poked through the eyes of the decorated skull. The top and bottom pieces are then stapled together.

Sugar Skulls

Materials: sugar, meringue powder, sugar skull molds

Sugar skull molds can be purchased from https://www.mexicansugarskull.com/sugar_skulls/sugar-skull-molds.html. Sugar skulls are incredibly easy to make – just combining the dry ingredients of sugar and meringue power and adding a little water so it becomes the consistency of dampened beach sand. More directions along with amounts can be found at https://www.mexicansugarskull.com/sugar_skulls/instructions.html. After waiting at least 24 hours for the skulls to harden, students can then decorate them using edible markers or royal icing.

IMG_2585.jpgIMG_2545.jpg

Skulls from Modeling Chocolate

Materials: white chocolate morsels, corn syrup.

This is another easy recipe to make (see http://artisancakecompany.com/recipe/how-to-make-perfect-modeling-chocolate/ for specific directions) although it is a bit tricky to get the modeling chocolate to the right consistency. Once the modeling chocolate is made, students sculpt it into 3D skulls.

IMG_2558.jpgIMG_2561.jpg

micro:bit Lit Skull

Materials: micro:bit (one for each team), heavy stock cardboard, (servos with jumper wires and alligator clips if movement is designed)

A micro:bit is mini-computer, half the size of a credit card equipped with 25 red LED lights that can flash messages. The micro:bit features an embedded compass, accelerometer, mobile, and web-based programming capabilities. It is compatible with a number of online code editors across a number of different languages (https://learn.sparkfun.com/tutorials/getting-started-with-the-microbit). For this activity, students cut out a skull with a window in the middle for the micro:bit (see below). They then use https://makecode.microbit.org/ to (1) create a message on the LEDs about Day of the Dead, and (2) code the servo to rotate the skull in a small arc from side to side (see https://sites.google.com/view/microbitofthings/7-motor-control/11-servo-control?authuser=0 for how to do this).

IMG_2532IMG_2629

Tissue Paper Marigolds

IMG_2566IMG_2404

Materials: yellow tissue paper, pipe cleaners.

The directions for how to make these can be found at https://tinkerlab.com/simple-paper-marigolds-dia-de-los-muertos/,

Edible Slime

Materials: sugar free Jello, starch

This is an easy recipe with the slime made by combining sugar free Jello, food starch, and water. Colors are determined by the flavor of the Jello – I like using lime for green slime and strawberry for red slime. For more information, visit https://thesoccermomblog.com/edible-silly-putty/

Miscellaneous Materials

Students are provided with core board and also given candy bones, candy gravestones, and chocolate animal crackers (to be crushed into dirt) so that these items along with the projects described above can be used for their displays, again reminding students that the displays should directly reflect their stories about Dead of the Day – Dia de los Muertos.

This slideshow requires JavaScript.

Student Reflection

Students were asked to randomly choose five cards from the deck of my Maker Reflection Cards to reflect on their experiences with this project. They were told that they could discard two of them but would need to answer three of them via a blog post, and I was totally elated when one asked if he could answer more – seven of them! Here are screenshots of his and another student’s reflections.

2018-11-07_17582018-11-07_1759

2018-11-07_1800

Written by Jackie Gerstein, Ed.D.

November 6, 2018 at 1:55 am

Integrating Maker Education into the Curriculum

with one comment

Rather than the maker experiences being an after school program, an add on activity, or an activity that is implemented when students have done their regular lessons work, it should be part of the regular, day-to-day curriculum. As noted in USC Rossier Online, “In order for your school and students to be fully invested in maker education, it has to be integrated into your curriculum, not squeezed in” (https://rossieronline.usc.edu/maker-education/sync-with-curriculum/).  Ayah Bdeir, who invented and runs littleBits, had this to say about integrating maker education into the curriculum:

It’s time for maker ed to move into the mainstream. Making should not be relegated to the times spent outside of class, e.g. lunch or after school. Nor should it only flourish in private schools, which don’t have to teach to standards. We need to work to show how making is a rigorous process that leads to valuable new technologies, products and experiences. Specifically, we need to tie maker projects to standards-based curriculum and show clearly the kinds of knowledge, skills and practices students learn as part of making (https://www.edsurge.com/news/2015-09-24-building-connections-between-maker-ed-and-standards)

Albemarle County Public School District is very intentional in their implementation of maker projects:

Maker projects can be created to support just about any subject area, from science to history to language arts. Maker education can be a tool for teaching the curriculum that you already have, At a glance, maker projects may appear disconnected from the curriculum. What may look like an arts and crafts activity, or just a bunch of kids playing with Legos, is actually a way to teach about ancient Rome or how to write a persuasive essay. (https://www.edutopia.org/practice/maker-education-reaching-all-learners)

To do this, though, the educator needs to approach his or her curriculum and lessons with a maker mindset. With this mindset, he or she figures out creative ways to integrate maker activities into existing lessons and instructional activities. The educator in these situations starts with the standards and objectives of their lessons, as they typically do with their regular lessons, and then designs and/or locates maker activities that fit the lesson. It simply becomes, “How can I add a making element to my lessons to reinforce concepts being learned?”

For subjects like science, this is a little easier as the labs that often accompany science lessons often have a hint of STEM or maker education. With a little tweaking, these labs can become more of a maker education type of activity. For example, if students are learning about circuits, they could wire cardboard model houses with lights and fans.  

For subjects like language arts, this integration is a little more challenging but with a little creativity, it is possible and exciting. An example is Tufts University Center for Engineering Education and Outreach’s program, Novel Engineering:

Novel Engineering is an innovative approach to integrate engineering and literacy in elementary and middle school. Students use existing classroom literature – stories, novels, and expository texts – as the basis for engineering design challenges that help them identify problems, design realistic solutions, and engage in the Engineering Design Process while reinforcing their literacy skills.

Example books that offer engineering or maker education challenges include:

The benefits of this type of curriculum integration include all those benefits described for maker education, in general, but also include:

  • Increased learner interest in and engagement with content rich lesson activities.
  • Lesson activities may become a gateway to content areas for learners who may not have been interested in that content area in the past. For example, making in language arts may spark a STEM interest for students who have previously only been interested in language arts; spark the interest of STEM-oriented students in language arts.

To help integrate maker education into the curriculum, I developed the following lesson plan template to assist teachers with this process.

Maker Lesson Plan

Example Maker Education Lesson Plan

Vision for this Lesson and for Student Learning (What is the overarching purpose of this lesson? How does making  enhance the lesson? Consider relevancy, authenticity, transfer to other life situations):

 

Student Voice  (What are the interests and needs of the students? How is their voice incorporated into the development of this lesson?):

 

Standards Addressed (Think cross-curriculum and 21st century skills; think process as well as content learnings):

 

 

 

 

 

  • ISTE Standards for Students (for detailed descriptions and sub-standards, see https://www.iste.org/standards/for-students):
    • Empowered Learner: Students leverage technology to take an active role in choosing, achieving and demonstrating competency in their learning goals, informed by the learning sciences.
    • Digital Citizen: Students recognize the rights, responsibilities and opportunities of living, learning and working in an interconnected digital world, and they act and model in ways that are safe, legal and ethical.
    • Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
    • Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
    • Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
    • Creative Communicator: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
    • Global Collaborator: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
  • 21st Century Skills (see for detailed descriptions at http://www.p21.org/our-work/p21-framework to add specifics):
    • Global Awareness: _________________________________________________
    • Financial, Economic: _______________________________________________
    • Business and Entrepreneurial Literacy: _________________________________
    • Civic Literacy: _____________________________________________________
    • Health Literacy: ___________________________________________________
    • Environmental Literacy: _____________________________________________
    • Creativity and Innovation: ___________________________________________
    • Critical Thinking and Problem Solving: _________________________________
    • Communication: ___________________________________________________
    • Collaboration: _____________________________________________________
    • Information Literacy: _______________________________________________
    • Media Literacy: ____________________________________________________  
    • ICT Literacy: ______________________________________________________
    • Flexibility and Adaptability: ___________________________________________
    • Initiative and Self-Direction: __________________________________________
    • Social and Cross-Cultural Skills: ______________________________________
    • Productivity and Accountability: _______________________________________
    • Leadership and Responsibility: _______________________________________

Lesson Challenge Statement – Framing the Experience: (How will the maker lesson be framed or frontloaded?  – What is the big challenge for this activity? What essential questions do you want learners to explore? What overarching concepts do you want learners to investigate? Is the challenge open and ill-defined so there are multiple opportunities for student interpretation, innovation, and creativity?) The maker lesson can be framed or frontloaded through:

  • Introducing Essential Questions
  • The Use of Scenarios
  • Specifying the Standards
  • Asking Questions Related To Personal Skills
  • Asking Questions to Help with Scaffolding and Sequencing the Activities
  • Asking Questions Related To Using Peer Support-Working Collaboratively

(More information about frontloading the maker experience can be found at https://usergeneratededucation.wordpress.com/2016/03/16/framing-and-frontloading-maker-activities/)

Required Prerequisite Knowledge and Skills:

Vocabulary: (What vocabulary do you want learners to learn and use?)

Getting Started: (What high impact activity will you do to get learners excited about or hooked into the upcoming lesson?)

  • Video: _________________________________________________________________
  • Hands-On Demonstration: _________________________________________________
  • AR/VR Simulation: _______________________________________________________
  • Online Virtual Simulation: _________________________________________________
  • Live Guest Speaker (in person or via Skype/Google Hangout): ____________________
  • Game (analog or digital): __________________________________________________
  • Group Discussion About the Learning Challenge

Tinkering and Exploration: (Will the learners benefit with some free-play tinkering with and exploring the materials?)

Skills and Knowledge Direct Instruction: (What, if any, knowledge and skills do you need to teach directly prior to the maker activity?)

Learner Planning Time: Time for learners to research and plan what they will do for the maker challenge.

Learner Creation Time: Time for the learners to create, to try out several iterations of their ideas, if needed.

Learner Sharing and Feedback Time: Time for learners to share what they are making with their peers; whose role then is to give feedback.

Documenting Learning and Reflection: How will learners document and reflect on their learning? Possible reflection questions include:

  • What new skills have you learned because of the maker experience?
  • What are the most important learning moments you take with you from this maker experience?
  • Would you do this or a similar maker project again? Why or why not?
  • Has this maker experience changed you? If yes, how?
  • Describe what you have learned about yourself as a result of your maker experience.
  • What would you like to change about your maker experience?
  • What were the benefits from you participating in this making activity?
  • What surprised you the most during your maker experience?
  • What did you do that seemed to be effective?
  • What did you do that seemed to be ineffective?
  • What were the most difficult parts of the maker experience? Why?
  • What were the most satisfying parts of the maker experience? Why?
  • What personal characteristics made this maker experience successful for you?
  • Describe an awareness about a personal characteristic that has been enhanced by your maker experience.
  • How does the maker experience relate to your long-term goals?
  • How have you been challenged during the maker experience?
  • How do you feel about what you made? What parts of it do you particularly like? Dislike?
  • What lessons can you learn from the maker experience?
  • What positives can you take away from the maker experience?
  • How can you apply what you learned from maker experience in your life?
  • What advice would you give to someone else working on the maker activities?
  • What did you learn through this experience and how can you use it in the future?
  • Looking back on the maker experience, what two things stand out to you the most and why?

(For more on reflecting on the maker experience, see https://usergeneratededucation.wordpress.com/2018/03/10/reflecting-on-maker-experiences-with-reflection-cards/.) 

Assessment: How will learners be assessed? (This is especially important in a school setting where grades and accountability are expected.)

  • Rubric – Based on Standards and Objectives
    • Teacher Generated
    • Student Generated
  • Portfolio Artifact
    • Submitted to a Blog
    • Submitted to a web platform like Seesaw
  • Peer Assessments

Sharing Out Findings: How will learners share out what they learned with a larger maker education community? Adam Savage of Mythbusters fame stated: Sharing is s a vital aspect of maker culture that is intrinsic to the underlying ethos of what it means to be a maker and by extension, in my opinion, a human being (https://boingboing.net/2018/05/23/adam-savage-at-maker-faire-th.html).

  • Use of Social Media?
  • Presentations to Local Students and Community Members?
  • News Coverage?
  • Teaching Others?

 

Written by Jackie Gerstein, Ed.D.

July 6, 2018 at 12:40 am

Robot-Enhanced Creative Writing and Storytelling (featuring Ozobot and Wonder’s Dot)

with 2 comments

There have been complaints leveraged against out of the box robots like Dash and Dot, Ozobot, Hummingbird, Sphero. The complaints usually revolve around the canned and prescriptive nature of their uses and programs, that they lack creative engagement by the younger users. I personally love the excitement my learners have using these robots. As with all tools and technologies and with creative framing, though, they can be used in creative and imaginative ways.

Mention robots to many English teachers and they’ll immediately point down the hall to the science classroom or to the makerspace, if they have one. At many schools, if there’s a robot at all, it’s located in a science or math classroom or is being built by an after-school robotics club. It’s not usually a fixture in English classrooms. But as teachers continue to work at finding new entry points to old material for their students, robots are proving to be a great interdisciplinary tool that builds collaboration and literacy skills. (How Robots in English Class Can Spark Empathy and Improve Writing)

This past term, I had my 2nd through 4th grade students work on their robot-enhanced creative writing and stories. In small groups, students were asked to create a fictional storyline and use StoryboardThat.com to create both the physical scenes and the accompanying narrative. As part of their directions, they were told that they were going to create a 3D setting out of cardboard boxes, foam board, LED lights, and other craft materials; and that they would use Wonder’s Dot with the Blocky App and Ozobot as the characters in their stories. Preparation time was divided between storyboarding, creating the scene, and learning how to use/code the robots. Because of all of the preparation and practice, the recording actually went quite quick and smoothly.

Here is a break down of the learning events that learners were asked to complete:

In small groups, create a storyboard using StoryboardThat which includes both the scenes and the narration.

2018-05-15_0644.png

2018-05-15_0641.png

Create the scenes or setting using craft materials, cardboard boxes, foam board, LED lights

IMG_3493IMG_3494

Learn how to use and code Ozobots and Wonder’s Dot

IMG_2881.jpgIMG_2871.jpg

Work out the details of completed stories prior to recording

. . . and here are their recorded stories (along with some clips of their preparation). They did such a good job – it is very much worth a view.

Written by Jackie Gerstein, Ed.D.

May 15, 2018 at 9:58 pm

Assessing Maker Education Projects

leave a comment »

assessment

Institutionalized education has given assessment a bad reputation; often leaves a sour taste in the mouths of many teachers, students, and laypeople. This is primarily due to the testing movement, the push towards using student assessment in the form of tests as a measure of student, teacher, principal, and school accountability.

Educators should be clear about why they include assessment in their instruction; be strategic and intentional in its use. For me, assessment really should be about informing the learner about his or her performance so that increased learning and future improvement result for that learner.

Assessment is the process of gathering and discussing information from multiple and diverse sources in order to develop a deep understanding of what students know, understand, and can do with their knowledge as a result of their educational experiences; the process culminates when assessment results are used to improve subsequent learning. (Learner-Centered Assessment on College Campuses: Shifting the Focus from Teaching to Learning)

As Hattie, Fry, and Fischer note in Developing “Assessment Capable” Learners:

If we want students to take charge of their learning, we can’t keep relegating them to a passive role in the assessment process.

When we leave students out of assessment considerations, it is akin to fighting with one arm tied behind our backs. We fail to leverage the best asset we have: the learners themselves. What might happen if students were instead at the heart of the assessment process, using goals and results to fuel their own learning? ((http://www.ascd.org/publications/educational-leadership/feb18/vol75/num05/Developing-%C2%A3Assessment-Capable%C2%A3-Learners.aspx)

Maker Education and Assessment

As maker education infiltrates more formal educational settings, there’s been and will continue to be efforts to include assessment as part of its implementation. It is important, though, to keep in mind the characteristics of maker education and the role assessment has within it.

Making innately provides evidence of learning. The artifact that results, in addition to the process that a student works through, provides a wealth of evidence, indicators, and data of their learning. Overall, though, assessing making comes back to the original (and difficult) question of what learning outcomes we’re seeking. Assessment is critical for understanding the scope and impact of learning, as well as the associated teaching, environment, culture, and content. (https://www.edutopia.org/blog/assessment-in-making-stephanie-chang-chad-ratliff)

Being a teacher, you’re constantly faced with having to assess student learning,” said Simon Mangiaracina, a sixth-grade STEM teacher. “We’re so used to grading work and giving a written assessment or a test. When you’re involved in maker education it should be more dynamic than that.” Part of the difficulty is that, in evaluating a maker project, teachers don’t want to undo all of the thinking that went into it. For instance, one of the most important lessons maker education can teach is not to fear failure and to take mistakes and let them inform an iterative design process — a research-informed variation of “guess and check” where students learn a process through a loop of feedback and evaluation.  (https://rossieronline.usc.edu/maker-education/7-assessment-types/  from USC Rossier’s online master’s in teaching program)

I have my gifted students do lots maker activities where I meet with the 2nd through 6th graders for 3 to 5 hours a week. Since I do not have to grade them (not in the traditional sense as I have to write quarterly progress reports), I don’t have to give them any tests (phew!). I do ask them, though, to assess their work. I believe as Dale Dougherty, founder of MAKE Magazine, does:

[Making] is intrinsic, whereas a lot of traditional, formal school is motivated by extrinsic measures, such as grades. Shifting that control from the teacher or the expert to the participant to the non-expert, the student, that’s the real big difference here. Dale Dougherty

Christa Flores in Alternative Assessments and Feedback in a MakerEd Classroom stated:

In a maker classroom, learning is inherently experiential and can be very student driven; assessment and feedback needs to look different than a paper test to accurately document and encourage learning. Regardless of how you feel about standardized testing, making seems to be immune to it for the time being (one reason some schools skip the assessment piece and still bill making as an enrichment program). Encouragingly, the lack of any obvious right answers about how to measure and gauge success and failure in a maker classroom, as well as the ambiguity about how making in education fits into the common standards or college readiness debate, has not stopped schools from marching forward in creating their own maker programs.

If the shift of control is given to the students within maker education settings, then it follows that the students should also be in charge of their assessments. One of the goals of maker education should be self-determined learning. This should include learners engaging in their own personal and personalized form of assessment.

Student self-assessment involves students in evaluating their own work and learning progress.

Self-assessment is a valuable learning tool as well as part of an assessment process.  Through self-assessment, students can:

  • identify their own skill gaps, where their knowledge is weak
  • see where to focus their attention in learning
  • set realistic goals
  • revise their work
  • track their own progress
  • if online, decide when to move to the next level of the course

This process helps students stay involved and motivated and encourages self-reflection and responsibility for their learning. (https://teachingcommons.stanford.edu/resources/teaching/evaluating-students/assessing-student-learning/student-self-assessment)

Witnessing the wonders of making in education teaches us to foster an environment of growth and self-actualization by using forms of assessment that challenge our students to critique both their own work and the work of their peers. This is where the role of self-assessment begins to shine a light. Self-assessment can facilitate deeper learning as it requires students to play a more active role in the cause of their success and failures as well as practice a critical look at quality. (Role and Rigor of Self-Assessment in Maker Education by Christa Flores in http://fablearn.stanford.edu/fellows/sites/default/files/Blikstein_Martinez_Pang-Meaningful_Making_book.pdf)

Documenting Learning

To engage in the self-assessment process of their maker activities, I ask learners to document their learning.

We need to integrate documenting practices as part of making activities as well as designing, tinkering, digital fabrication, and programming in order to enable students to document their own learning process and experiment with the beauty of building shared knowledge. Documentation is a hard task even for adults, but it is not so hard if you design a reason and a consistent expectation that everyone will collect and organize the things they will share. (Documenting a Project Using a “Failures Box” by Susanna Tesconi in http://fablearn.stanford.edu/fellows/sites/default/files/Blikstein_Martinez_Pang-Meaningful_Making_book.pdf)

Documenting their learning can include one or a combination of the following methods:

  • Taking notes
  • Talking to a fellow learner or two.
  • Making sketches
  • Taking photos
  • Doing audio recordings
  • Making videos

(For more information, see Documenting Learning https://usergeneratededucation.wordpress.com/2016/04/08/documenting-learning/)

The folks at Digital Promise have the following message for maker educators regarding documentation:

Make the documentation an organic and expected part of the process. When documentation feels like it is added without reason, students struggle to engage with the documentation process. Help students consider how in-process documentation and reflection can help them adapt and improve the project they are working on. Help them see the value of taking time to stop and think.(http://global.digitalpromise.org/teachers-guide/documenting-maker-projects/)

Documenting learning during the making process serves several purposes related to assessment:

  1. It acts as ongoing and formative assessment.
  2. It gives learners the message that the process of learning is as important as the products of learning, so that their processes as well as their products are assessed. (For more information on the process of learning, see Focusing on the Process: Letting Go of Product Expectations https://usergeneratededucation.wordpress.com/2017/12/17/focusing-on-the-process-letting-go-of-product-expectations/)

Maker Project Reflections

Because many students haven’t had the experience of reflection and self-assessment, I ease them into this process.  With my gifted students, I ask them to blog their reflections after almost all of their maker education activities. They take pictures of their makes, and I ask them to discuss what they thought they did especially well, and what they would do differently in a similar future make. Here are some examples:

2018-05-03_1259.png

2018-05-03_1257.png

2018-05-03_1256.png

Teacher and Peer Feedback

The learners’ peers and their educators can view their products, documented learning, and reflections in order to provide additional feedback. A culture of learning is established within the maker education community in that teacher and peer feedback is offered and accepted on an ongoing basis. With this type of openness and transparency of the learning process, this feedback not only benefits that individual student but also the other students as they learn from that student what worked and didn’t work which in turn can help them with their own makes.

The Use of Assessment Rubrics

As a final thought, there has been some thoughts and efforts into using rubrics as assessment tools. Here is one developed by Lisa Yokana and discussed in Creating an Authentic Maker Education Rubric 

edutopia-yokana-maker-rubric.jpg

I think rubrics, such as this, can be of value in assessing student work and/or having them assess their own work, but I prefer more open ended forms of assessment so the learners can but more of their selves into the process.

Written by Jackie Gerstein, Ed.D.

May 5, 2018 at 10:01 pm

Reflecting on Maker Experiences with Reflection Cards

with one comment

Slide05

I’ve discussed the importance of reflection in my Framework for Maker Education; and specifically discussed reflecting on the maker experiences in several of my blog posts:

One of my friends and colleagues, Lucie DdeLaBruere, interviewed me and recently blogged about my thoughts and strategies for reflecting on the maker experience in Create Make Learn: March 5 – Reflection as part of Maker Centered Learning http://createmakelearn.blogspot.com/2018/03/march-5-reflection-as-part-of-maker.html?spref=tw

One of the tools I use to facilitate the reflective process is a board game – see below.

maker-game-best

pasted image 0 (1)IMG_3978

Some of the things that I believe makes this game successful are:

  • The questions provide the prompts but they are open enough to be personalized by the learners.
  • The game promotes discourse and active listening.
  • The interactive and semi-structure of the game make it fun for the learners.

Because of the success of the game, I was motivated to create a similar tool for maker reflections. I created a set of reflection cards that I believe can facilitate some deeper reflection.

MakerReflection cards.jpg

Maker Cards 2.jpg

Written by Jackie Gerstein, Ed.D.

March 10, 2018 at 5:44 pm

The Magic of Making: The Human Need to Create

leave a comment »

Recently I had the privilege of facilitating two half day workshops entitled, A Framework for Maker Education. The workshop including several mini-sessions of participants creating their own maker projects (Paper Circuits, Squishy Circuits, Gami-Bots, Brush bots, and micro:bit projects). What struck me most during these creating sessions was the high degree of energy, excitement, and joy in the room – it was palatable – with 100% participant engagement. As evidence, see the photos below:

This slideshow requires JavaScript.

The conclusion I came up with for this energy and engagement was that the human need to create is innate; and that too many people, starting during their childhood public education, stop creating. When they were given the opportunity, permission/invitation, materials, and methods, they fully embraced making and creating.

I believe that educators can be intentional in setting up environments where learners’ propensity to create flourishes. Some elements that can assist with this kind of unbridled making and creating include:

  • Open ended projects that promote self-directed differentiation and personalization.
  • Choice of projects, methods, materials.
  • Some structure but lots of room for a personal touch; lots of room for creativity.
  • Educators letting go of expectations what the final project should look like.
  • Focus on the processes of learning.
  • Focus on the social emotional aspects of learning – collaboration, persistence, acceptance of failure.
  • Acceptance of a learner’s projects based on their own criteria of excellence rather than of the educator’s.
  • Reflection is built into the process so learners can revisit their projects with a critical eye.

Conditions for Creating

Open ended projects that promote self-directed differentiation and personalization

Open ended projects equal lots of options for what the learners can make. So given similar materials and methods, each learner is able to create a project based on his or her own interests and skills. For example, during the workshop, learners were instructed how to make a simple paper circuit but then transformed that paper circuit into a personalized art piece as can be seem in the images above.

Open ended projects permit each student to naturally and instinctively to work at or slightly above his or her ability level.  One of results or consequences of providing such activities is an increase in learner engagement, excitement, and motivation. Open ended learning activities permit and encourage learners to bring their “selves” into the work. They become agents of their own learning. Because of this freedom, they often shine as true selves come through. Learners often surprise both the educator and themselves with what they produce and create. It becomes passion-based learning.  Not only do the activities become self-differentiated, they become personalized. (Natural Differentiation and Personalization Through Open Ended Learning Activities)

Choice matters

Choice in the maker education environment can include a choice of projects; a choice of materials; and a choice of methods. During the maker education workshop, learning stations were set up from which the learners could choose: more advanced paper circuits, Gami-bots, bristlebots, Squishy Circuits, and micro:bit projects. Not only were the learners able to choose which projects they wanted to create, but these projects offered them the option to add their own personal touches.

Learning that incorporates student choice provides a pathway for students to fully, genuinely invest themselves in quality work that matters. Participating in learning design allows students to make meaning of content on their own terms. Education works when people have opportunities to find and develop unaccessed or unknown voices and skills. Audre Lorde poignantly describes this “transformation of silence into language and action [as] an act of self-revelation.” Opportunities for flexibility and choice assist learners in finding passion, voice, and revelation through their work. (Student Choice Leads to Student Voice)

Some structure but lots of room for a personal touch; lots of room for creativity.

Learners, during these workshops, were provided with foundational skills for making the projects through direct instruction, videos, handouts that could then be used as springboards for their own creativity. Maker activities such as these were new to these learners; scaffolding was needed in order for them to develop the foundational skills which in turn increased their creativity.

Direct instruction is provided through structured and prescribed activities with the goal of learners then being able to eventually go into self-determined directions. There has been some criticism leveraged against out-of-the-box maker education kits, programmable robots, and step-by-step maker activities. My contention is that learners often don’t know what they don’t know; and that giving them the basic skills frees them to then use their creativity and innovation to take these tools into self-determined directions. (Scaffolding Maker Education Learning Experiences)

Educators letting go of expectations what the final project should look like.

In Focusing on the Process: Letting Go of Product Expectations , I discussed the following:

To truly focus on the process rather than products of learning, the educator needs to let go of expectations about the specific products that should be produced by the students. There are expectations regarding some of the processes in which learners should engage (e.g., divergent thinking, questioning, researching, creating, innovating) but the educator lets go of the pictures in her or his mind about what the products should look like.

The benefits for learners when the educator lets go of final product expections include:

  • They are not limited by my expectations nor the expectations of a lesson or assessment developed by an outside entity (e.g., textbook or testing company).
  • Their engagement, motivation, curiosity, and excitement increase.
  • They learn to tolerate and then embrace ambiguity.
  • They learn skills such as self-directed learning, taking initiative, locating resources, asking for help that can be transferred to all learning endeavors.
  • It reflects and models how learning occurs outside of school.
  • There is an increased investment and pride in their work.
  • They develop both a sense of confidence and a sense of competence.

Focus on the processes of learning.

When educators let go of expectations of what the products should be, which I believe is especially important in a maker education environment, the focus becomes on the processes of learning.

Focusing on the learning process emphasizes the students’ responsibility in the learning-teaching interaction. It both enables and encourages students to engage in their own learning. This engagement helps both students and teachers to build learning up from standards and to achieve competencies needed in our modern world. (Is Learning a Product or Process – part 2 )

Accept a learners’ projects based on their own criteria of excellence rather than of the educator’s criteria.

When the educator lets go of expectations of the final product, the learner develops his or his criteria of success.2018-03-05_0657 During one of my maker education workshops, one of the participants finished the basics of the introductory LED paper circuit activity. While the other participants were adding their artistic slants, J. sat there with her simple paper project seemingly satisfied with her project. I went over to talk to her. She said that she was finished, and I said back to her, “That’s fine. You don’t have to do any embellishments if you choose not to.” She later told me of a second grade teacher who criticized her art (yikes – that teacher should have been fired). J. told me later that this acceptance of where she was at actually became encouragement for her to take some risks for later projects in the workshop. Her reflective piece included the following:

I learned a lot about myself about how I actually had been discouraged till now to try any kind of artsy or crafty projects, however, with encouragements from partners and Jackie, I was encouraged to go further and do/attempt additional Maker projects/products.

Focus on the social emotional aspects of learning – collaboration, persistence, acceptance of failure.

When the maker activities are open ended and process-oriented, social-emotional skills such as collaboration, acceptance of failure, and persistence naturally emerge.

Self-Awareness: Making in all its forms requires a full range of skills including cognitive, physical, and affective skills. Given this need for multiple and diverse skill set, effective and successful making comes from an accurate assessment of one’s strengths and limitations as well as having optimism and confidence that challenges can be overcome within the making process.

Self-Management: Making, especially making something new, often includes developing goals on the fly, revising those goals, and managing frustrations as the maker works through and learns new skills, processes, and knowledge related to that make.

Relationship skills: The power of being a maker is amplified when one works collaboratively on projects, gets help from others, and shares findings with others. (Maker Education and Social-Emotional Development)

The educator in this context plants the seeds of social emotional learning (SEL) through the use of language of SEL and strategic questioning such as:

  • What processes are you using to develop, assess, and revise your goals while making?
  • What strategies are you using to manage any frustrations or failures that are occurring during making your project?
  • How your using others to help you with your project?
  • How are you collaborating with your peers?
  • Are you asking for help if and when you get stuck making your project?
  • How are you sharing my ideas with others?

Here are some of the reflective comments by my workshop participants related to their social emotional learning:

This was the first time I had experimented with making electrical circuits and we tried some fun activities that I hope to apply in my classroom. In the first activity I learned that having a creative context or backstory to the work was motivating and helped me to extend myself beyond the basic task. In the final activity I found I was able to respond to a problem, persevere and create an original solution while maintaining the integrity of my design.

We were able to learn that in order to succeed we must try and try again. At times it was frustrating but we were able to collaborate between the team and find solutions and were able to solve the problems we faced.

Today I was reminded of the power of learning environments which invite creative, collaborative thinking  – curated with a variety of flexible materials which offer endless possibilities and room for all people to enter into play.

Reflection is built into the process so learners can revisit their projects with a critical eye.

Insuring that a reflective piece is included in the maker education process assists learners in developing their own criteria of excellence and evaluating their performance based on this criteria. The reflection process is as or even more important as the making itself. John Dewey famously stated, “We don’t learn from experience . . . we learn from reflecting on experience.” Reflection can be a form of making in itself. Participants, during my workshops, were given the option to reflect on their learning using online tools such as word clouds, video creators, audio pieces, photo essays, online storybooks. What follows is a sampling of reflections from my maker education workshops. I used Google Slides so all reflections are aggregated in one location for access by all participants to later review and examine them:

 

%d bloggers like this: