User Generated Education

Education as it should be – passion-based.

Posts Tagged ‘maker educator

Maker Education Camp: Circuit Crafts

leave a comment »

This is my third summer offering maker education summer camps as part of a bigger program at a local school.  During mornings (9 to 12 with a half hour recess), campers, grades Kindergarten through 6th grade, can choose from one of four enrichment classes: art, drama, games, foreign languages, computers, and in my case, maker camps. During the afternoons, all campers get together for typical camp activities – fun and games, field trips, water sports, silly competitions. Each camp lasts a week. This summer I am offering: Cardboard Creations, Circuit Crafts, Toy Making and Hacking, and Robotics and Coding.

I often discuss the need to implement maker education programs with minimal cost materials and ones that offer the potential to tap into diverse learners and their diverse interests:

3d Printers, Ardinos, litteBits, Makey-Makeys, GoSpheros, Lillipads, . . . oh my! These technologies are seductive especially seeing all the press they get on social media, blogs, and Kickstarter.  Given all of the media coverage, an educator new to Maker Education may get the perception that it is all about this kind of high tech stuff. For less affluent schools or after-school programs, it may seem that maker education is out of their reach given budgetary restraints. A maker education program can be fully implemented with minimal cost supplies. Cardboard boxes, recycled materials such as water bottles, detergent bottles, and other plastic throwaways, tape, glue guns, scissors/knives, and markers in conjunction with learners’ imaginations, creativity, and innovative ideas can be the stuff that makerspaces are made of (Making MAKEing more inclusive).

Many of the discussions about and actions related to integrating maker education into educational environments center around the use of new technologies such computer components (Raspberry PisArduinos), interactive robots for kids (Dash and DotOzobotsSpheros), and 3D printers. These technologies are lots of fun and I facilitate Robotics and Computer Science with my gifted students and at one of my summer camps (noting that I purchased the robots myself). The learners engaged in these high tech learning activities with high excitement and motivation. Such high excitement, engagement and motivation, though, were also seen at my low tech/low cost maker education camps: LED crafts, Toy Hacking and Making, and Cardboard Creations. A recent NPR article discussed several challenges for maker education. One of them was related to equity issues, providing maker education for all students regardless of income level:

A big challenge for maker education: making it not just the purview mostly of middle- and upper-middle-class white kids and white teachers whose schools can afford laser cutters, drones or 3-D printers (3 Challenges As Hands-On, DIY Culture Moves Into Schools).

(Cardboard Creations: A Maker Education Camp )

This post lists the materials I used for the Circuit Crafts and descriptions of the activities.

Materials and Costs:

This camp did have some costs associated with it but I believe that given the wide range of activities offered, the costs were justified. The following is my materials list and costs. FYI – I actually purchased most of these materials cheaper via ebay.

  • Snap Circuits Pro (2 at $60 each – $120)
  • Circuit Maze (2 @ $23 each – $46)
  • Circuit Kits (3 at $14 https://www.amazon.com/Basic-Circuit-Kit-Batteries-Holders/dp/B00FKCVFPW – $42)
  • Squishy Circuits
    • Playdoh (two 10 packs at $8.00 each – $16)
    • modeling clay (24 color pack @ $14)
    • 5 mm LED’s – used for several projects (500 mixed color from ebay – $14)
    • 9V Batteries (10 2-packs from Dollar Store – $10)
    • battery terminals with wires (20 – $10)
  • Gami-Bots
    • business cards ($5)
    • coin pager motors (50 from ebay – $25; I got extras as sometimes the wires pull out and sometimes the campers want to make more than one)
    • coin batteries – used for several projects (200 from ebay – $20)
  • Wiggle or Art Bots
  • Paper Circuits
    • coin batteries (purchased quantity under Gami-bots)
    • 5 MM LED lights (purchased quantity under Squishy Circuits
    • copper tape (2 rolls of 1/8″ x 55 yd – $15)
  • Minecraft Blocks and Dollhouses
    • Cardstock (150 sheet pack from Walmart – $5.50)
  • Miscellaneous Supplies (found at school)
    • Tape
    • Two sided tape
    • Scissors
    • Paper
    • Butcher Block Paper
    • Markers

The total budget for serving 20 kids for 2.5 hours per day for 5 days was about $450 noting that the games and kits ($200 of the money) used to kick-off the camp were one time purchases. They will be used again for future camps. It ended up being $22 for each camper for the entire week – $12.50 without the games or kits. Having a materials fee; or doing DonorsChoose.org or a fundraiser can easily cover these costs.

What follows are descriptions and how-tos for the circuit activities at did at this maker camp.

Introduction to Circuits with Games and Manipulatives

To introduce learners to circuits, they played with:

For the first morning, I set up stations for each of the above. Learners were asked to work with a partner or two. They moved to any station at any time as long as they spent time finishing several projects at a given station.

This slideshow requires JavaScript.

Squishy Circuits

Squishy Circuits uses conductive and insulating play dough to teach the basics of electrical circuits in a fun, hands-on way. There’s no need for breadboards or soldering – just add batteries and pre-made doughs (or make your own dough). Squishy Circuits are very simple and is based on two play doughs – one that is conductive (electricity flows through it) and one that is insulative (does not allow electricity to flow through it). Power is supplied by a 4AA battery pack and travels through the conductive dough to provide power to LEDs (Light Emitting Diodes), buzzers, or motors.  https://squishycircuits.com/what-is-squishy-circuits/

This PDF was shared with the makers campers: Squishy Circuits Introduction PDF.  It provides some background and simple get started activities.

I then project resources on the Whiteboard to spark ideas for creative use of Squishing Circuits:  http://www.pearltrees.com/jackiegerstein/squishy-circuits/id15355392squishy

 

This slideshow requires JavaScript.

Gami-Bots

A Gami-Bot is a simple DIY origami robot that is made from a vibration motor, business card, 3v cell battery, and tape. It is so easy it practically builds itself (https://otherlab.com/blog/post/howtoons-gami-bot).

This was developed by Howtoons. They now sell it as a kit but I buy all of the materials separately as they are simple materials and easily accessible.

Directions can be found via this Howtoons cartoon:

NewImage146

This is a high engagement, low entry activity for both younger and older (like adults) learners. I encourage learners to decorate them to make them more anthropomorphic and to engage in free play after their creation which often translates into competitions such as racing and length of time staying in determined area.

 

This slideshow requires JavaScript.

Wiggle and Art Bots

As this was a summer camp with a budget, my “big” purchase for this camp was Wiggle Bots bought from TeachGeek , but with a few parts like 3v motors, AA batteries, AA battery holders, plastic cups, markers, and tape, learners can easily make their own wiggle and art bots. See my page of resources on Artbots and Scribbling Machines at http://www.makereducation.com/artbots–scribbling-machines.html

 

This slideshow requires JavaScript.

LED Paper Projects

The last two days of camp were spent making LED projects:

  • Minecraft Blocks
  • Paper Circuits
  • Circuit City

Minecraft Blocks

I printed off paper templates for Minecraft Blocks from http://stlmotherhood.com/diy-minecraft-light-blocks-diamond-emerald-redstone/. (Yes, it requires a color copier which all of the schools where I work [including the Title 1 ones) have.) Campers were instructed to cut them out and hole punch out “windows” in their blocks to allow the light to shine out. After assembling their blocks leaving the top open, they inserted LED lights with coin batteries taped into place.

components_throwies

http://www.technologystudent.com/elec_flsh/button1.html

 

This slideshow requires JavaScript.

Paper Circuits

I printed off the the parallel and switch circuit templates found at paper-circuit-project-templates. I printed them in color but black and write would have been fine. Additional materials for this project were LEDs, copper tape, and coin batteries. The templates are pretty self-explanatory so I walked around and gave the campers assisted when needed.

 

This slideshow requires JavaScript.

Circuit City

Finally, learners were given templates for paper house structures (https://www.template.net/business/paper-templates/paper-house-template/ – I encouraged campers to add lit LEDs as they did for their Minecraft blocks. They were asked to also use their Minecraft blocks and their paper circuits as part of the city. The miscellaneous materials (craft sticks, straws) were also available for them to use. A large piece of butcher block paper was placed on the floor and the learners were given the following simple directions, “Create a city out of your paper crafts: your houses, Minecraft blocks, and paper circuits. You can use the extra LED/coin batteries and markers to add to your city.” Once their city was complete, I darkened the room.

This is the second time I’ve done this activity, and both times, I observed the campers having lots of fun doing some spontaneous role play interacting with the city and each other.

 

This slideshow requires JavaScript.

 

Written by Jackie Gerstein, Ed.D.

July 8, 2017 at 4:41 pm

Design Thinking Process and UDL Planning Tool for STEM, STEAM, Maker Education

leave a comment »

Post by Jackie Gerstein, Ed.D. @jackiegerstein and Barbara Bray @bbray27. Crossed posted at http://barbarabray.net/2017/06/08/design-thinking-process-and-udl-planning-tool/.

Design-Thinking-and-UDL-Planning-Tool-header

If there is a makerspace in your school, it may be down the hall, in the library, or in another building. If there is someone other than the teacher managing the makerspace or there is a schedule for the school, your kids may only be able to use it once a week or month. Some makerspace activities may be focusing on how to use the resources available and may not be connecting the activities to the curriculum or around a real world problem. If this is how the makerspace is set up in your school, then your kids may not have access to the resources, materials, and tools when they need them, especially for STEM or STEAM.

In deciding what resources you need based on the learners you have, you may first need to determine how your learners learn best, what projects you plan to do, how you can set up a makerspace in your classroom, and much more. This is why we decided to create a planning tool for makerspaces in the classroom for you using the Design Thinking Process and Universal Design for Learning®.

The Design Thinking Process

Design thinking is an approach to learning that includes considering real-world problems, research, analysis, conceiving original ideas, lots of experimentation, and sometimes building things by hand. The projects teach students how to make a stable product, use tools, think about the needs of another, solve challenges, overcome setbacks and stay motivated on a long-term problem. The projects also teach students to build on the ideas of others, vet sources, generate questions, deeply analyze topics, and think creatively and analytically. Many of those same qualities are goals of the Common Core State Standards. (What Does ‘Design Thinking’ Look Like in School?)

We adapted the Design Thinking Process to include additional phases based on our own experiences in schools with educators and kids.

Define Problem IconDefine the Problem: The educator along with the learners generate possible authentic problems to explore within their local community (classroom, school, social, community) which includes identification of the intended audience.

Empathy IconEmpathy and Perspective Taking: Learners interview clients to gain an understanding of their needs and to see the problem from their perspective. The educator can assist learners in the interview process including how to develop interview questions.

Idea Generating IconIdea Generation: Learners, typically working in small groups, generate lots of ideas and questions to ask to solve the design thinking problem or challenge. Each generated possible design is analyzed as to its potential to resolve the design challenge.

Sketch Design IconSketch Design: A blueprint or sketch of the selected design is created through pencil and paper or through an online tool such as Google Draw or Sketchup. This design can be pitched to another group for constructive feedback.

Prototype IconPrototype – Test – Refine: This phase is the actual creating and building of the product. To get the product to work as the plan often takes several iterations of prototype, test, and refine. Learners are encouraged to use the tools and building processes that work for them.

Feedback IconFeedback from User: The final design is presented to the users for their feedback. The designers ask the users about the degree to which the design met their needs asking specific questions about what worked and what still needs improvement.

Reflection Icon

Final Reflection: Learners reflect on the process in a way that works best for them – blogs, photo essays, video recording, podcast, sketchnotes, illustrated ebook.

 

Share IconShare Out: A goal of the design thinking process is sharing learning out to a broader public. This is typically done by sharing documentation of learning and final reflections through social media.



Universal Design for Learning (UDL)

Universal Design for Learning (UDL) was developed by David Rose and Ann Meyers of the Center for Assistive Special Technology (CAST). UDL was designed to reduce the barriers to the curriculum and maximize learning. UDL provides a framework for all learners to help them become self-directed and independent expert learners. UDL has reordered the principles and guidelines, to begin with, Multiple Means of Engagement, the Why of Learning that compliments how the Design Thinking Process involves learners in identifying an authentic problem or challenge.

  • Multiple Means of Engagement (Why) is the affective network that explains how interest and purpose engages and motivates learners to want to learn.
  • Multiple Means of Representation (What) is the recognition network how content is represented and how learners process information.
  • Multiple Means of Action and Expression (How) is the strategic network involving how learners monitor progress and demonstrate and reflect evidence of learning.

The National Center on Universal Design for Learning goes deeper referring to the alternate version of the UDL Guidelines found in the book UDL Theory and Practice by David Rose and Ann Meyers where the order of the principles and the guidelines have changed. The UDL Guidelines provide a deep dive into each of the principles to checkpoints that provide resources, examples, and research. We pulled together the phases of the Design Thinking Process and identified specific options under each principle to create a Design Thinking Process and UDL Planning Tool for teachers.

Design Thinking and UDL Planning Tool

In the initial phase of defining the problem, the teacher involves learners to generate possible authentic problems within their local community. The problem can be defined by the teacher to encourage learner interest. We connected the UDL principle Multiple Means of Engagement to this phase by providing options for recruiting learners’ interest through optimizing relevance, value, and authenticity. To understand the problem, the teacher activates learners’ background knowledge and invites them to highlight patterns and critical features around real world problems that impact them.

Screenshot-2017-06-07-20.09.06

Egg Drop ActivityThe UDL connection to Engagement to the second phase of Empathy and Perspective Taking made so much sense to us. The UDL connection involves learners having options for sustaining effort and persistence by fostering collaboration and community. This phase is where learners gain an understanding of the needs of specific people about a problem from their perspective. They may interview, do observations or survey them about the problem.

Some lessons can involve a specific problem identified by the teacher who first wants to encourage empathy. We provide one example around an Egg Drop and the Design a Squishy Circuit for a Classmates (see these examples at the end of this post).

The middle phases of the Design Thinking Process involve the iterative steps related to idea generation and prototype-test-refine as well as getting feedback from the users.

Screenshot-2017-06-07-20.19.47

As can be seen in the UDL Connections column of the Design Thinking and UDL planning tool, representation and action and expression can be explicitly addressed. Representation or the What of Learning is a strong focus during the Idea Generation and Feedback from Users phases as the educator helps learners highlight patterns, critical features, and relationships of their discoveries. The Action and Expression or the How of Learning emerges most strongly during the Creating a Blueprint and Prototype-Test-Refine Phases as learners include their own personal touches and preferred means of expression.

Screenshot-2017-06-07-20.24.47

The final phases of the Design Thinking Process involve reflection on the design and making experiences and then sharing out the results to a broader audience.

Screenshot-2017-06-07-20.29.53

UDL technology connectionThe UDL connection to Action and Expression is especially strong in the final phases of Reflection and Sharing Out. During the reflection phase, learners are given the option to express what they learned during and because of their STEM, STEAM, Maker Education experience in a way that makes the most sense to them given the nature of the task; and their preferred means of expression. This is especially relevant given all that technology and online tools provide.

For example, students can write a blog, create a photo essay with a caption, record a podcast or video, do a hand-drawn or online sketch, create a comic.  Learners, many being savvy at the use of social networks, can then choose how they want to share out their reflections. This serves several purposes related to Action and Expression: (1) it gives learners an authentic audience, and (2) it helps other makers learn from their personal experiences.

Examples of STEM, STEAM, and Maker Education Activities using the Design Thinking and Universal Design for Learning (UDL) Planning Tool

We hope the Design Thinking and UDL planning tool we developed helps you guide the design of learning activities that focus on STEM and STEAM and brings makerspaces into your classrooms.

We will be discussing this topic in the Twitter chat (#plearnchat) on Monday, June 19 at 4 pm PT, 5 pm CT. We ‘re also going to be sharing more details including redesigning makerspaces in the classroom in our presentation at ISTE 2017 in San Antonio on Monday, June 26 11:30 to 12:30. Please join us!

We welcome any comments, ideas, or questions.

Jackie GersteinDr. Jackie Gerstein’s byline is, “I don’t do teaching for a living. I live teaching as my doing . . . and technology has amplified my passion for doing so.” Dr. Gerstein has been teaching in-person and online for several decades. Currently, she teaches master’s level online courses in educational technology for Boise State, Walden, and Western Governors’ Universities as well as gifted elementary education where she focuses on STEM, STEAM, and Maker Education.

Jackie actively blogs at  https://usergeneratededucation.wordpress.com/ and tweets at https://twitter.com/jackiegerstein

Additional Resources referenced from Jackie’s blog:

Barbara Bray Pic

Barbara is a teacher, writer, change agent, risk-taker, instructional designer, connector, futurist and visionary. Whenever anyone told Barbara she couldn’t do something, she took it more like a challenge. New and veteran teachers are overwhelmed with day-to-day tasks plus being asked to teach and integrate technology or to change their curriculum. The big question even today is “how do you fit everything in that is expected of you and meet the needs of all students?”

Barbara co-authored two books on personalized learning with Kathleen McClaskey:Make Learning Personal and How to Personalize Learning. She wrote a regular column on professional development for OnCUE (Computer Using Educators) for over 17 years and continues to write here, for Personalize Learning, chapters in books, articles, and as guest posts on other blogs.  She works tirelessly to find and research new tools and methods that help educators and personalize learning. Now with multiple opportunities to network using social media and join various online communities, teachers and learners are confused. Barbara makes it her job to determine what is authentic, valid, cost-effective, safe, user-friendly, and relevant for her clients. She is relentlessly researching how to personalize learning so all learners follow their passion so they discover their purpose.

Barbara  actively blogs at http://barbarabray.net/ and tweets at https://twitter.com/bbray27

 

Written by Jackie Gerstein, Ed.D.

June 8, 2017 at 10:33 pm

A Fuller Framework for Making in Maker Education

with 3 comments

Background Information

I recently learned, for the first time, about Aristotle’s belief that there were three basic activities of humans: theoria (thinking), poiesis (making), and praxis (doing). Corresponding to these activities were three types of knowledge: theoretical, the end goal being truth; poietical, the end goal being production; and practical, the end goal being action (https://en.wikipedia.org/wiki/Praxis_(process)).

The Greek theoria, from which the English word “theory” is derived, meant “contemplation, speculation, a looking at, things looked at”.  The word theoria is derived from a verb meaning to look, or to see: for the Greeks, knowing was a kind of seeing, a sort of intellectual seeing (https://en.wikipedia.org/wiki/Theoria).

Poïesis is etymologically derived from the ancient Greek term ποιέω, which means “to make” (https://en.wikipedia.org/wiki/Poiesis).

Praxis (From ancient Greek: πρᾶξις) is the process by which a theory, lesson, or skill is enacted, embodied, or realized (https://en.wikipedia.org/wiki/Praxis_(process)). “Praxis” may also refer to the act of engaging, applying, exercising, realizing, or practicing ideas. Praxis may be described as a form of critical thinking and comprises the combination of reflection and action. Paulo Freire defines praxis “reflection and action directed at the structures to be transformed.”(https://en.wikipedia.org/wiki/Praxis_(process))

Implementing a Broader Framework of Making in Maker Education

All of this led me to think about how this would translate into a full spectrum of making in the context of maker educator. Having such a framework would help insure that learning from the making experience is more robust, not left up to chance. I believe a fuller spectrum or framework would including the following elements:

  • Play, Tinkering, Experimentation – This is uncensored, boundaryless, whimsical making. It can be considered free play.  This, in my mind, is the first part of of Poïesis which translated from Greek “to make”.  How this translates into practice is by providing learners with lots of making materials; and telling them to just dive in and play hard with those materials.
  • Framing or Frontloading the Making Experience – This is the introducing the making experience for more mindful and intentional making. It helps both the educators and learners to set purpose and intention for the making activity prior to actually doing it. This is discussed in Framing and Frontloading Maker Activities where I go in more detail how to frontload or frame the maker activities:
    • Using and Reviewing Essential Questions
    • Using Scenarios
    • Specifying Standards
    • Asking Questions Related To Personal Skills
    • Asking Questions to Help with Scaffolding and Sequencing the Activities
    • Asking Questions Related To Using Peer Support-Working Collaboratively
  • Mindful and Intentional Making – Once there is a familiarity with the making materials and processes,  making can become more mindful and intentional.This is the second part of poisis or the making process. Making becomes more goal-oriented, focused, and more results or product oriented (although process is still important).
  • Observing and Reflecting Upon Results – This is the theoria or thinking part of the process. After making, it is when makers step back away from their making to observe and reflect on their processes and results.”Being able to reflect is a skill to be learned, a habit to develop. Reflection requires metacognition (thinking about your thinking), articulation of that thinking and the ability to make connections (past, present, future, outliers, relevant information, etc.)” (Amplifying Reflection).
  • Critical Awareness and Analysis –  This is the praxis, the critical thinking component that combines reflection and action. It takes reflection to a deeper level by dissecting the making process to analyze what worked and didn’t work which, in turn, will inform future makes. This critical analysis should directly and strongly influence future making experiences – the action part.
  • Sharing to Elicit Broader Connections and Change – Given today’s ease of sharing via the Internet and social media, the action part of praxis has been expanded, in this framework, to include sharing out one’s makes, observations, reflections, and critical analyses to a broader audience. This can occur by writing about the making process, and/or by doing a photo essay, video, podcast to share via social media. By doing so, others can benefit from one’s make.

a-framework-for_17172814_ad53e9ef20a574d3e44d93f984241673d1c3da24

Written by Jackie Gerstein, Ed.D.

October 23, 2016 at 6:19 pm

Mindset of the Maker Educator Presentation

with 7 comments

This presentation, prepared for the Global Maker Day virtual conference, provides some background information on maker education, being a reflective practitioner, documenting learning, the roles of the maker educator, and resources.

Written by Jackie Gerstein, Ed.D.

May 17, 2016 at 2:23 pm

Framing and Frontloading Maker Activities

with 7 comments

As I’ve mentioned in some other posts, I come from a background in Experiential Education (yes, it is a specific professional discipline). I’ve also discussed reflecting on the learning activities to increase the chances of extracting learning as well as transferable skills and knowledge from the activities. This is an integral part of experiential education – see my previous posts, Where is reflection in the learning process? and The Maker as a Reflective Practitioner.

Another concept common to Experiential Education, that also increases the chances that transferable skills and knowledge result, is framing or frontloading the activities as part of introducing them.

Frontloading is making clear the purpose of an activity prior to actually doing it.  The idea is that if participants clearly understand the purpose or lesson upfront, that lesson will repeatedly show itself during the action component. (http://chiji.com/processing.htm)

The practitioner tells or guides participants before the experience on how what they want them to focus on in the activity. It is about guided attention before the activity. (http://www.aee.org/tapg-best-p-matching-facilitation-strategy)

What are the benefits of frontloading?

  • It helps participants use the upcoming activity to build on prior knowledge and experience
  • It helps participants set purpose and intention for the activity
  • It distributes expertise to the participants before the activity begins, as opposed to the facilitator or instructor being the only expert (http://experience.jumpfoundation.org/what-is-frontloading/)

Some of the general themes and ideas for frontloading making activities include:

  • Using and Reviewing Essential Questions – explicitly discussed prior to the maker activities. For example –
    • What are the attributes of having a maker mindset?
    • What skills do you need to be an inventor? an engineer?
    • What are the steps to the design process?
    • How do inventors, engineers, scientists, mathematicians, and/or artists solve problems? How do they overcome challenges?
  • Using Scenarios – for example –
    • You have been hired to create a new invention to bring kindness into the world. This invention will be shared with all of the kids in the United States.
    • The kids at the local shelter would love to have one of the latest and greatest of toys. Make them one of these.
  • Specifying Standards – the Next Generation Science Standards include some good examples. The educator can introduce the standards and explain what they mean in terms of the upcoming maker activities. For example:
    • Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
    • Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
  • Asking Questions Related To Personal Skills – for example –
    • The following maker activity will draw upon your imagination, creativity, and innovative mindset. What do you consider your strengths in this area that can be used during your maker activity?
  • Asking Questions to Help with Scaffolding and Sequencing the Activities – the facilitator can review previous activities and then ask participants prior to the next learning activity –
    • In this next activity you will be asked to do _______________, what skills did you learn in the (previous activity) that will help you do ____________ in this upcoming activity?
  • Asking Questions Related To Using Peer Support-Working Collaboratively – for example – 
    • How might you use your co-learners support if and when you get stuck or reach an impasse while working on the next activity?

Frontloading Maker Activities

Written by Jackie Gerstein, Ed.D.

March 16, 2016 at 12:53 am

%d bloggers like this: