User Generated Education

Education as it should be – passion-based.

Posts Tagged ‘experiential learning

Maker Education Camp: Circuit Crafts

leave a comment »

This is my third summer offering maker education summer camps as part of a bigger program at a local school.  During mornings (9 to 12 with a half hour recess), campers, grades Kindergarten through 6th grade, can choose from one of four enrichment classes: art, drama, games, foreign languages, computers, and in my case, maker camps. During the afternoons, all campers get together for typical camp activities – fun and games, field trips, water sports, silly competitions. Each camp lasts a week. This summer I am offering: Cardboard Creations, Circuit Crafts, Toy Making and Hacking, and Robotics and Coding.

I often discuss the need to implement maker education programs with minimal cost materials and ones that offer the potential to tap into diverse learners and their diverse interests:

3d Printers, Ardinos, litteBits, Makey-Makeys, GoSpheros, Lillipads, . . . oh my! These technologies are seductive especially seeing all the press they get on social media, blogs, and Kickstarter.  Given all of the media coverage, an educator new to Maker Education may get the perception that it is all about this kind of high tech stuff. For less affluent schools or after-school programs, it may seem that maker education is out of their reach given budgetary restraints. A maker education program can be fully implemented with minimal cost supplies. Cardboard boxes, recycled materials such as water bottles, detergent bottles, and other plastic throwaways, tape, glue guns, scissors/knives, and markers in conjunction with learners’ imaginations, creativity, and innovative ideas can be the stuff that makerspaces are made of (Making MAKEing more inclusive).

Many of the discussions about and actions related to integrating maker education into educational environments center around the use of new technologies such computer components (Raspberry PisArduinos), interactive robots for kids (Dash and DotOzobotsSpheros), and 3D printers. These technologies are lots of fun and I facilitate Robotics and Computer Science with my gifted students and at one of my summer camps (noting that I purchased the robots myself). The learners engaged in these high tech learning activities with high excitement and motivation. Such high excitement, engagement and motivation, though, were also seen at my low tech/low cost maker education camps: LED crafts, Toy Hacking and Making, and Cardboard Creations. A recent NPR article discussed several challenges for maker education. One of them was related to equity issues, providing maker education for all students regardless of income level:

A big challenge for maker education: making it not just the purview mostly of middle- and upper-middle-class white kids and white teachers whose schools can afford laser cutters, drones or 3-D printers (3 Challenges As Hands-On, DIY Culture Moves Into Schools).

(Cardboard Creations: A Maker Education Camp )

This post lists the materials I used for the Circuit Crafts and descriptions of the activities.

Materials and Costs:

This camp did have some costs associated with it but I believe that given the wide range of activities offered, the costs were justified. The following is my materials list and costs. FYI – I actually purchased most of these materials cheaper via ebay.

  • Snap Circuits Pro (2 at $60 each – $120)
  • Circuit Maze (2 @ $23 each – $46)
  • Circuit Kits (3 at $14 https://www.amazon.com/Basic-Circuit-Kit-Batteries-Holders/dp/B00FKCVFPW – $42)
  • Squishy Circuits
    • Playdoh (two 10 packs at $8.00 each – $16)
    • modeling clay (24 color pack @ $14)
    • 5 mm LED’s – used for several projects (500 mixed color from ebay – $14)
    • 9V Batteries (10 2-packs from Dollar Store – $10)
    • battery terminals with wires (20 – $10)
  • Gami-Bots
    • business cards ($5)
    • coin pager motors (50 from ebay – $25; I got extras as sometimes the wires pull out and sometimes the campers want to make more than one)
    • coin batteries – used for several projects (200 from ebay – $20)
  • Wiggle or Art Bots
  • Paper Circuits
    • coin batteries (purchased quantity under Gami-bots)
    • 5 MM LED lights (purchased quantity under Squishy Circuits
    • copper tape (2 rolls of 1/8″ x 55 yd – $15)
  • Minecraft Blocks and Dollhouses
    • Cardstock (150 sheet pack from Walmart – $5.50)
  • Miscellaneous Supplies (found at school)
    • Tape
    • Two sided tape
    • Scissors
    • Paper
    • Butcher Block Paper
    • Markers

The total budget for serving 20 kids for 2.5 hours per day for 5 days was about $450 noting that the games and kits ($200 of the money) used to kick-off the camp were one time purchases. They will be used again for future camps. It ended up being $22 for each camper for the entire week – $12.50 without the games or kits. Having a materials fee; or doing DonorsChoose.org or a fundraiser can easily cover these costs.

What follows are descriptions and how-tos for the circuit activities at did at this maker camp.

Introduction to Circuits with Games and Manipulatives

To introduce learners to circuits, they played with:

For the first morning, I set up stations for each of the above. Learners were asked to work with a partner or two. They moved to any station at any time as long as they spent time finishing several projects at a given station.

This slideshow requires JavaScript.

Squishy Circuits

Squishy Circuits uses conductive and insulating play dough to teach the basics of electrical circuits in a fun, hands-on way. There’s no need for breadboards or soldering – just add batteries and pre-made doughs (or make your own dough). Squishy Circuits are very simple and is based on two play doughs – one that is conductive (electricity flows through it) and one that is insulative (does not allow electricity to flow through it). Power is supplied by a 4AA battery pack and travels through the conductive dough to provide power to LEDs (Light Emitting Diodes), buzzers, or motors.  https://squishycircuits.com/what-is-squishy-circuits/

This PDF was shared with the makers campers: Squishy Circuits Introduction PDF.  It provides some background and simple get started activities.

I then project resources on the Whiteboard to spark ideas for creative use of Squishing Circuits:  http://www.pearltrees.com/jackiegerstein/squishy-circuits/id15355392squishy

 

This slideshow requires JavaScript.

Gami-Bots

A Gami-Bot is a simple DIY origami robot that is made from a vibration motor, business card, 3v cell battery, and tape. It is so easy it practically builds itself (https://otherlab.com/blog/post/howtoons-gami-bot).

This was developed by Howtoons. They now sell it as a kit but I buy all of the materials separately as they are simple materials and easily accessible.

Directions can be found via this Howtoons cartoon:

NewImage146

This is a high engagement, low entry activity for both younger and older (like adults) learners. I encourage learners to decorate them to make them more anthropomorphic and to engage in free play after their creation which often translates into competitions such as racing and length of time staying in determined area.

 

This slideshow requires JavaScript.

Wiggle and Art Bots

As this was a summer camp with a budget, my “big” purchase for this camp was Wiggle Bots bought from TeachGeek , but with a few parts like 3v motors, AA batteries, AA battery holders, plastic cups, markers, and tape, learners can easily make their own wiggle and art bots. See my page of resources on Artbots and Scribbling Machines at http://www.makereducation.com/artbots–scribbling-machines.html

 

This slideshow requires JavaScript.

LED Paper Projects

The last two days of camp were spent making LED projects:

  • Minecraft Blocks
  • Paper Circuits
  • Circuit City

Minecraft Blocks

I printed off paper templates for Minecraft Blocks from http://stlmotherhood.com/diy-minecraft-light-blocks-diamond-emerald-redstone/. (Yes, it requires a color copier which all of the schools where I work [including the Title 1 ones) have.) Campers were instructed to cut them out and hole punch out “windows” in their blocks to allow the light to shine out. After assembling their blocks leaving the top open, they inserted LED lights with coin batteries taped into place.

components_throwies

http://www.technologystudent.com/elec_flsh/button1.html

 

This slideshow requires JavaScript.

Paper Circuits

I printed off the the parallel and switch circuit templates found at paper-circuit-project-templates. I printed them in color but black and write would have been fine. Additional materials for this project were LEDs, copper tape, and coin batteries. The templates are pretty self-explanatory so I walked around and gave the campers assisted when needed.

 

This slideshow requires JavaScript.

Circuit City

Finally, learners were given templates for paper house structures (https://www.template.net/business/paper-templates/paper-house-template/ – I encouraged campers to add lit LEDs as they did for their Minecraft blocks. They were asked to also use their Minecraft blocks and their paper circuits as part of the city. The miscellaneous materials (craft sticks, straws) were also available for them to use. A large piece of butcher block paper was placed on the floor and the learners were given the following simple directions, “Create a city out of your paper crafts: your houses, Minecraft blocks, and paper circuits. You can use the extra LED/coin batteries and markers to add to your city.” Once their city was complete, I darkened the room.

This is the second time I’ve done this activity, and both times, I observed the campers having lots of fun doing some spontaneous role play interacting with the city and each other.

 

This slideshow requires JavaScript.

 

Written by Jackie Gerstein, Ed.D.

July 8, 2017 at 4:41 pm

The Classroom or Library as a Makerspace

with 2 comments

Makerspaces, Maker Education, STEM, and STEAM are gaining lots of traction in Kindergarten though college level education. Articles, resources on social media, and conference presentations on these topics are proliferating at a rate that most educators are now familiar with maker education.

Once again this school year, schools will be ramping up robotics programs and opening more makerspaces, according to the latest report from the New Media Consortium and the Consortium for School Networking. As for “important developments” on the horizon, makerspaces (first listed as a trend in the 2015 report) will pick up speed over the next one to two years. As schools continue to foster 21st century skills in students in order to prepare them for the demands of a global workforce, K–12 will see the adoption of more makerspaces and research efforts to surface best benefits and practices. Furthermore, the report noted that “makerspaces were initially lauded for their role in stimulating interest in STEM fields,” but now they are often viewed as conduits to STEAM education with more emphasis on the humanities, visual arts, dance, drama and other areas of the arts (Ravipati, 2017).

Makerspaces like vocational shops and science labs are great additions to schools. They often contain the tools, machinery, and technologies associated with making – 3D printers, laser cutters, vinyl cutters, high tech robotics, vocational tech machinery. These are great for educational institutions and learners that can afford them.

Problems occur when administrators, educators, learners, and communities come to believe that maker education is synonymous with these tools and spaces. First, they may be out of budget for schools especially those serving lower income populations. Second, the regular classroom teacher or librarian may be intimidated with these advanced tools and technologies. Finally, in order to prevent maker education in becoming the educational flavor of the month, administrators, educators, and libraries need to not be seduced by these high tech tools. The longevity and sustainability of maker education will depend on making it feasible, approachable, and accessible to the masses of educators.

Public focus on maker education often centers on flashy technology, but it is more than just that. Maker education is about building educational experiences that are based in the real world, that allow student choice, and that achieve multiple objectives. Maker education can be used in a variety of ways and projects can be adjusted in scale or scope to meet individual class or student needs. The key to successful maker education implementation is finding project ideas that seamlessly integrate “making” into the lessons. In the end, maker education is all about providing engaging experiences for students that brings out the best in them in the form of problem solving and determination (https://sparkfuneducation.com/what-is-maker-education.html.).

With these broader definitions and approaches to maker education, and with the realization that maker education does not have to be about the shiny, new toys; more school administrators, librarians, and educators may be willing to embrace maker education within their own work settings.  A classroom or library can be at least partially transformed into its own makerspace, a space for powerful student learning by doing the following actions workable and realistic for most librarians and educators:

A classroom or library can be transformed into its own makerspace, a space for powerful student learning by doing the following realistic and workable actions:

  • Removal of Obsolete, Non-Flexible Classroom Desks (including the traditional teacher’s desk)
  • Spaces for Playing, Tinkering, Making, Collaborating, Discussing, Researching, Reflecting
  • An Agile and Nimble Learning Environment
  • Materials Openly and Easily Available
  • Materials and Activities to Spark Diverse Learners and Their Diverse Interests
  • Scavenged Materials
  • A Place and Space That Supports Chaos and Messiness
  • Accessible, Low-Entry, High Ceiling Materials and Activities
  • A Learning Environment Driven by Learner Choice and Voice
  • The Space Screams of Fun and Engagement
  • The Space Screams of a Maker Mindset Not the Stuff

classroom makerspace

Removal of Archaic, Non-Flexible Classroom Desks

The image that often comes to mind about the classroom desk is one that features a plastic chair with chrome legs and a fiberboard tabletop that partially encloses a student’s body (for a history of the classroom desk, see A Visual History of School Desks). The first step for creating a classroom or library space that supports making is to get rid of these archaic pieces of furniture that seem to have been invented more for control than for learning.

The idea that students must be seated at desks working in rows is quickly becoming archaic. Technology and collaborative work environments are changing the design of learning spaces. Experts hope that the emerging paradigm will translate into improved learning spaces (Learning Environment: 20 Things Educators Need to Know about Learning Spaces).

Spaces for Playing, Tinkering, Making, Collaborating, Discussing, Researching, Reflecting

Classroom educators and librarians may wonder how they might create spaces for playing, tinkering, making, collaborating, discussing, researching, and reflecting. First and foremost, they need to develop an innovator’s mindset, one outside of the box of what a classroom should look, sound, and be like. Second, practitioners need to become intentional in insuring that a full spectrum of making skills, attitudes, and knowledge is offered to learners. What will follow is educators and librarians who are creative, innovative, and resourceful in creating spaces that can offer a variety of learning activities. The types of desired learning activities should drive how the learning space should be set up as discussed in the case studies reported by the Hechinger Report article, Personalized Learning: Why Your Classroom Should Sound Like A Coffee Shop:

As a first step, they began with ideas and used them to define the space. Searching questions such as “What types of activities will define this flexible space?” were used to escape the constraints of the physical space and get beyond our own set of normal limitations.

An Agile and Nimble Learning Environment

The intentional use of flexible seating that form agile and nimble learning spaces support the learning intentions discussed in the previous section.

An agile learning environment is an educational playground that is intentionally designed to be adjustable, exchangeable and moveable. The learning space is designed to support idea generation, collaboration and experimentation. agile learning environments ultimately showcase how the design of a physical space, as well as the implementation of technology within that space, can shift how people communicate with one another.

The primary goal of an agile learning environment is flexibility. The furniture in the space, and the technology used within it, are flexible so that it can be configured and re-configured to suit different approaches to learning and teaching. An agile learning environment has the ability to turn a static or ‘dead’ space into a dynamic space (The primary goal of an agile learning environment).

With some creativity and flexibility, the practitioner can set up a unique, multipurpose space to serve the goals of making, the learners, and multipurpose uses specified above. The spaces become agile and nimble. There are lots of resources that discuss flexible seating. Here is a ScoopIt aggregate of resources  http://www.scoop.it/t/flexible-seating-1

Affordable and Scavenged Materials

There are so many avenues for acquiring materials for the classroom or library seeking to be at least a part-time makerspace.

Makerspace materials

Once educators open themselves up to all of the possibilities of making, they will find free materials everywhere – cardboard at stores; recycled plastic bottles at school or the local recycling center; the storage closet at school where all of the old science kits are stored (I’ve found them at every school where I work) with all kinds of making supplies; old technologies and appliances for learners to take apart and build new inventions

IMG_4324

Affordable Materials Openly and Easily Accessible

In a learner-centered classroom environment, materials are displayed openly – being accessible to the learners on an as-needed-when-needed basis.  Both of the elementary schools where I work have general consumables for educators (and I believe it’s true for most schools): xerox paper, butcher block paper, crayons, scissors, tape, markers, rubber bands, paper clips. These materials are stored openly in bins in cubbies for my learners.

Materials such as these can provide a foundation for making; brainstorming, prototyping, reflecting and should be available for learners to use for their making activities without asking the teacher. Having them displayed can spark learners’ ideas. So when a learner says, “I need some paper.” (They ask because of their previous school experiences.) My comment back is, “Then go get it.”

Materials and Activities to Spark Diverse Learners and Their Diverse Interests

The maker education and maker spaces movements are way too often symbolized by the machines; 3D printers, laser cutters, high tech components (Raspberry Pi and Arduino) and way too often it is white males who are attracted to these machines. In order to respect the diverse learners represented by gender, age, ethnic and racial background, then first, the definition of making needs to be expanded. As Adam Savage of Mythbusters fame noted in his 2016 Bay Area Maker Faire talk:

What is making? It is a term for an old thing, it is a new term for an old thing. Let me be really clear, making is not simply 3D printing, Art Lino, Raspberry Pi, LEDs, robots, laser and vinyl cutters. It’s not simply carpentry and welding and sculpting and duct tape and drones. Making is also writing and dance and filmmaking and singing and photography and cosplay.

Every single time you make something from you that didn’t exist in the world, you are making. Making is important; it’s empowering. It is invigorating, but why? There are lots of results that are good that come from making. We improve the world around us. We show people how much we care about them. We solve problems, both personal and societal (Adam Savage’s 2016 Bay Area Maker Faire Talk).

2017-07-02_0754

With this expanded definition of making, it follows that the activities and materials in the classroom or library should reflect the diverse learners and their specific interests.

A Place and Space That Supports Chaos and Messiness

Traditional classrooms and libraries are often marked by students at their desks completing their learning tasks quietly, independently with as little movement of possible. This is opposite of what happens in a making environment. The classroom or library becomes loud, seemingly chaotic, and messy, but authentic and engaged learning is often messy.

Learning is often a messy business. “Messy” learning is part trial and error, part waiting and waiting for something to happen, part excitement in discovery, part trying things in a very controlled, very step by step fashion, part trying anything you can think of no matter how preposterous it might seem, part excruciating frustration and part the most fun you’ll ever have. Time can seem to stand still – or seem to go by in a flash. It is not unusual at all for messy learning to be …um …messy!  But the best part of messy learning is that besides staining your clothes, or the carpet, or the classroom sink in ways that are very difficult to get out … it is also difficult to get out of your memory! (http://www.learningismessy.com/quotes/)

Accessible, Low-Entry, High Ceiling Materials and Activities

“When discussing technologies to support learning and education, my mentor Seymour Papert often emphasized the importance of “low floors” and “high ceilings.” For a technology to be effective, he said, it should provide easy ways for novices to get started (low floor) but also ways for them to work on increasingly sophisticated projects over time (high ceiling).” Mitch Resnick in https://design.blog/2016/08/25/mitchel-resnick-designing-for-wide-walls/

I do conference presentations where I have educators and librarians make paper circuits and Gami-bots. The success rate for these projects is 100% which translates into low entry into making (I took liberty to change low low to low entry). At one of my recent workshops, one teacher made the following design out of her paper circuit which says, “The moment your realize you can be a maker.”

IMG_0147

Similar materials can also create a high ceiling or more complex activities such as advanced art projects, most complex paper circuit projects, use of more advanced maker technologies.

A Learning Environment Driven by Learner Choice and Voice

The bottom line of setting up a learning environment based on the tenets typically associated with making is that learner voice and choice is enhanced. When choice and voice are intentionally built into learning then school and education work.

School works when students have opportunities to produce quality work about issues that matter. Education works when people have opportunities to find and develop unaccessed or unknown voices and skills. Audre Lord poignantly describes this “transformation of silence into language and action [as] an act of self-revelation.” Opportunities for flexibility and choice assist learners in finding passion, voice, and revelation through their work (Student Choice Leads to Student Voice).

The Space Screams of Fun and Engagement; a Place for and By Learners

Piaget famously noted that play is the work of children and I have the belief that all humans maintain the sense of wonder of a child. Embedding fun into making; into learning in general increases engagement, joy, creativity, innovation, and collaboration.

In our test-driven educational world of today being on task and on time in many schools leaves little time for play. Lunch periods have been shortened and days and years have been lengthened in an apparent quest to make our students into perfect little technicians, automatons who can react specifically in isolation to a set of pre- set stimuli in a consistent and certain way. Little room is left for the unexpected or the un-planned in our modern classrooms. It is a strangely disastrous way to prepare our children for a future where it appears that the only constant will be continual change. By play I do not mean little league, dance, or any other adult controlled activity. It must be kid controlled, kid directed, and kid policed for real learning about life to take place. Is it possible that our current infatuation with the concept that spending more time on something will make it better is so logical and easily observable and testable that just as logic and observation has in the past it might make people believe that the Earth is flat? (“Play is the work of children”….. J. Piaget).

Fun can be felt, seen, experienced when as soon as learners and visitors walk into the space.  I love watching the faces on visitors when they enter my own classroom. They light up as they see my sofas, chairs, lamps; making supplies in cubbies in the back of the room; and most of all my learners’ work such as LED lit on student-generated posters hanging on the wall, paper roller coasters in-process of being made, and Lego creations on the Lego wall.

The Space Screams the Maker Mindset Not the Stuff

The battle cry of educators using educational technology is that the pedagogy needs to come before the technology. I am baffled, then, why I go to edtech conferences and find so many sessions on the technology, e.g., 60 apps in 60 minutes. The same seems to be true for the maker movement these days. Practitioners talk about the maker mindset and then speak of the shiny new toys they use without talking about the context – of what skills and knowledge students learn from it. For example, with the 3D printer, they might talk about the Yoda they made and I say, “So what?” It really is about having a maker mindset not about the shiny, new maker tools. It’s about the making process; about the engagement, creativity, innovation, struggles to complete a difficult task, sense of accomplishment. A cardboard box, for example, can become a chariot, rocket, robot, marble run, Foosball game, dollhouse, Hot Wheels track, house, fort, castle, game.

We must exercise the discipline to refrain from attaching too quickly to an idea just because it’s new. Making is no exception, so to truly prepare ourselves to be successful in this new venture, let’s be sure we set our students up to have the right mindset to be courageous innovators (6 Must-Haves for Developing a Maker Mindset).

With a maker mindset and some of the strategies outlined above, any classroom or library can become a makerspace.

Written by Jackie Gerstein, Ed.D.

July 2, 2017 at 2:09 pm

Documenting and Reflecting on Learning

with 6 comments

I am a strong proponent of encouraging learners of all ages to engage in reflective practice.

Learners do not just receive information only at the time it is given; they absorb information in many different ways, often after the fact, through reflection. The most powerful learning often happens when students self-monitor, or reflect. Students may not always be aware of what they are learning and experiencing. Teachers must raise students’ consciousness about underlying concepts and about their own reactions to these concepts. ETE Team

Documenting Learning

Silvia Tolisano sees documenting learning as:

  • a process of intentional documenting serves a metacognitive purpose
  • a creative multimedia expression (oral, visual, textual)
  • a component of reflective practice
  • taking ownership of one’s learning
  • a memory aid
  • curation
  • being open for feedback  (Documenting FOR Learning)

http://langwitches.org/blog/2014/07/01/documenting-for-learning/

Blogging as a Form of Documenting Learning and Reflection

I find blogging to be a one of the most powerful ways to documenting learning and engage in reflective practice.

Blogging has its own unique benefits as Sylvia Duckworth’s Sketchnote summarizes:

Top-10-Reasons-for-Students-to-Blog-Sylvia-Duckworth-CC-BY-flickr

Experiential, STEM, STEAM, and maker education are the focus of my gifted education classes. The learners in my gifted education classes have access to Chromebooks.  Having learners take pictures of their artifacts and describing what they did is a standard practice in my classes.

Sometimes I list vocabulary words I ask learners to include in their blogs. For example, for a design challenge, I asked learners to include the following vocabulary:

  • design thinking
  • communicate
  • empathy
  • tolerance

Here are some example blog posts from 6th grade students:

2017-05-21_1054

2017-05-21_1104

2017-05-21_1057

Blogging, as opposed to keeping a hand-written journal of classroom experiences, has unique advantages in my classroom:

  • Learners can easily include photos of their work.
  • Work is easily reviewed and edited for errors.
  • Learners’ classmates can easily view and comment on one another’s work.
  • Blogging acts as a formative assessment whereby I, as the educator, get an opportunity to learn what elements of the projects were significant for my learners.

A Picture Tells So Many Stories

Because my classroom activities are high engagement, learners become totally immersed in the activities. They aren’t interested in taking photos during the activities. Also due to the student-centric nature of the learning activities, my role becomes that of facilitator walking through the classroom and visiting with individual groups of students to find out what they are doing, answer questions, give feedback. This guide-on-the-side role allows me to take lots of photos of the students. In essence, then, I become the official photography documenting student learner so they and their parents have an archive of the school year’s activity. We review these photos throughout the school year as a form of reflection. It’s fun to hear the learner comments exclaiming joy and amazement in what they learned earlier in the school year.

Here are links to photos I took for my two gifted classes and posted to a shared folder on Google Photos during the 2016-17 school year:

A Final Reflection

As a way to wrap-up the school year, learners should be given the opportunity to review their work from the past school year. For my learners, I asked them to look through all of the photos I took and the blog posts they wrote and choose between 5 and 10 of their most favorite and best projects. (It was great listening them express their delight in reviewing all of the projects they completed during the school year.) After selecting these, learners were asked to create a presentation of their chosen works using one of the following options:

They then presented their work to their peers and a group of adults: parents, school officials, visitors to the school.

A few afterthoughts about this final activity:

  • Throughout the school year, learners were asked to present their learning in front audiences. One of the students has a dual diagnosis – gifted and Asperger’s. This student wouldn’t even talk to the group at the beginning of the year. Loved the confidence shown during the final presentation.
  • The final presentations gave me, as the educator, a type of program evaluation where I got the opportunity to learn the most significant classroom projects from my learners’ perspectives.

Written by Jackie Gerstein, Ed.D.

May 21, 2017 at 5:42 pm

Toy Take Apart and Repurposing

with 3 comments

Toy take apart and hacking is a high engagement activity that works for kids of all ages, including adults who haven’t lost their sense of kid, and both genders. I have done it multiple times during my summer maker camp for elementary level kids, with my gifted elementary students, and at conferences as part of teacher professional development.

Here is a description of this activity from the tinkering studio at the Exploratorium:

Do you ever wonder what’s inside your toys? You’ll make some exciting and surprising discoveries about their inner parts when you don some safety goggles and get started dissecting your old stuffed animal, remote controlled car, or singing Santa. Use screwdrivers, seam rippers, scissors, and saws to remove your toy’s insides. Check out the mechanisms, circuit boards, computer chips, lights, and wires you find inside. Once you’ve fully dissected your toy, you can use the toy’s parts, your tools, and your imagination to create a new original plaything.  (https://tinkering.exploratorium.edu/toy-take-apart)

Standards Addressed

Toy take apart and hacking addresses a lot of cross curricular standards including:

  • Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. (NGSS)
  • Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. (NGSS)
  • Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. (NGSS)
  • Report on a topic or text, tell a story, or recount an experience in an organized manner, using appropriate facts and relevant, descriptive details to support main ideas or themes; speak clearly at an understandable pace. (ELA CCSS)
  • Write informative/explanatory texts to examine a topic and convey ideas and information clearly. (ELA CCSS)
  • Write narratives to develop real or imagined experiences or events using effective technique, descriptive details, and clear event sequences. (ELA CCSS)
  • Elaborate, refine, analyze and evaluate their own ideas in order to improve and maximize creative efforts. (21st Century Skills)
  • Act on creative ideas to make a tangible and useful contribution to the field in which the innovation will occur. (21st Century Skills)
  • Demonstrate originality and inventiveness in work and understand the real world limits to adopting new ideas. (21st Century Skills)
  • View failure as an opportunity to learn; understand that creativity and innovation is a long-term, cyclical process of small successes and frequent mistakes. (21st Century Skills)
  • Solve different kinds of non-familiar problems in both conventional and innovative ways. (21st Century Skills)

Frontloading and Framing the Experience

(For background information about this idea, see Don’t Leave Learning Up to Chance: Framing and Reflection)

To help frontload and frame this activity, participants are given the following scenario:

You have been hired to create the newest, most exciting handheld game to hit the market in years. You can decide the type of game, the population for whom you want to design it for – age range and gender, the goal of the game, the rules, any functions. The sky is the limit but there is one caveat – you need to recycle parts from old handheld games, ones made a decade or two ago, to create your prototype. Here are some questions to consider as you make your prototype –

  • How will you decide what to make?
  • What factors do you need to consider as you make your game?
  • What actions can you take if you get stuck using the tools? Coming up with ideas?
  • How can you ask for help as well as support others during the toy take apart and hacking?

How-To

I like to use the older handheld games as they contain lots of interesting parts and can be bought fairly cheaply in lots through ebay. First, the toys are passed around so participants can examine and learn about them.

Participants select the toy they want to take apart. Using the various screw drivers, scissors, wire cutters, and hammers that have been laid out on a work table, the toys are taken apart as much as they can be taken apart.

This slideshow requires JavaScript.

After the participants fully take apart their toys, they are asked to create a new game out of their parts and parts discarded by the other participants. I use hot glue guns but soldering of parts can be done, too.

The criteria that I give to the participants for their game creation includes:

  • The creation must be a new game – one that the participant hasn’t heard of nor played.
  • The parts need to be used creatively – not the same way they were used in the original game.
  • The specifications for the game need to be developed and written as a poster are –
    • Name of the Game
    • Age Level Recommendations
    • The Rules
    • How to Play

IMG_8922IMG_9207

Participants then share their designs with the rest of the group.

Reflection

(For background information about this idea, see Don’t Leave Learning Up to Chance: Framing and Reflection)

After finishing their projects and sharing, participants can reflect on their experiences through:

Through a conversation with other participants; a presentation using Google Slides, Prezi, or Adobe Spark; or a blog post – your choice, address the following questions –

  • Describe the game you made – why did you make that type of game?
  • What changes did you make to your original design? Why?
  • Did you get stuck at any point during the activity? Taking apart the toy? Coming up with a design? Using the tools? Making your game? If so, how did you get unstuck?
  • What will you do the same/differently if you do a similar activity in the future?

Here are some of the reflective blogs 5th and 6th graders wrote about this activity:

This slideshow requires JavaScript.

More Information

For more information on toy take apart and hacking,  visit http://www.makereducation.com/toy-take-apart.html.

 

 

Written by Jackie Gerstein, Ed.D.

April 8, 2017 at 8:13 pm

A Framework for Implementing Maker Education Activities Presentation

leave a comment »

I am facilitating two mini-workshops at ASCD Empower 17 and the 2017 ASCD Conference on Teaching Excellence on using a framework for implementating maker education activities. The description for my session is:

Providing a framework for maker activities helps ensure that their use is intentional and that meaningful learning is extracted from these experiences. The educator, using such a framework, becomes proactive in framing or frontloading the maker experiences and in debriefing or processing them to increase the chances that learning occurs. Framing or frontloading is making clear the purpose of an activity prior to actually doing it; it helps to set purpose and intention for the activity. Reflecting on the maker activities can occur through a variety of methods: talking, writing, sketching, and using technology such as Web 2.0 tools and social media. During this interactive presentation, participants will experience this framework through maker activity that is introduced through framing or frontloading and then by directly using reflection techniques upon completion of the activity.

The slides for my session:

Written by Jackie Gerstein, Ed.D.

March 24, 2017 at 4:46 pm

Teacher PD: Purposeful Tinkering and Application

leave a comment »

As a preface to this post, my belief is that deep learning does not occur through sit and get. Deep learning occurs through experiential, authentic, interactive, collaborative instructional processes.  If deep learning is desired for teacher professional development, then it should reflect best practices for teaching and learning.

Professional learning must focus on creating safe and productive spaces for teachers to begin planning and experimenting with the concepts that have been shared. Too often, facilitation centers on giving strategies to teachers rather than coaching them on how to deliver the strategies to students. As a result, teachers leave the session with a toolbox of ideas that are never implemented. Instead, more professional learning time should be spent helping teachers plan, develop materials, and practice delivering the strategies with colleague support. (http://inservice.ascd.org/personalized-professional-development-moving-from-sit-and-get-to-stand-and-deliver/)

When I design teacher PD-related workshops, I am guided by the following principles:

  1. Teachers need time to tinker, play, and experiment with instructional materials and resources especially with new forms of teaching/learning technologies.
  2. For skills development, such as using new technologies, scaffolding and increasing complexity should be a strong component of the PD process.
  3. Teachers need to be offered lots of instructional suggestions and resources so they can tailor their PD learning to their own teaching environments.
  4. Intentional and active reflection and goal setting should be included to increase the chances of transfer of learning.

guiding-princip_7056696_d17d679a92cec561ad2afea419d9191e7e92edd1

Tinkering With Instructional Materials

Teachers and librarians, like their students, need hands-on experience with tools and with playing to learn as that helps them build creative confidence. (https://www.edutopia.org/blog/crafting-professional-development-maker-educators-colleen-graves)

Teachers, during PD, should be provided with time, resources, and materials with which to play. It sets the expectation that they will be active agents of their own learning. It gives them the message it is okay to play and experiment with the materials; that tinkering is often needed as a part of learning new skills.

Scaffolding and Introducing Complexity

As teachers, we have come to learn over the years that we should never expect our students to fully understand a new idea without some form of structured support framework, or scaffolding as the current buzzword defines it.  The same, of course, should be the case in supporting learning for our fellow teachers. (http://mgleeson.edublogs.org/2012/03/10/when-it-comes-to-technology-teachers-need-as-much-scaffolding-as-students/)

Once teachers get familiar with instructional materials and resources through tinkering, they should be guided through a series of skills that are increasingly complex; that honor the process of scaffolding.  As with tinkering, this should be a hands-on process where teachers can try out these skills with facilitator and colleague support and guidance. As confidence is built through success with basic skills and strategies, more complex skills and strategies will be more welcomed by teachers.

Lots of Instructional Strategies and Resources

Even with fairly homogeneous groups of teachers, their teaching and learning needs can be vastly different. They often teach different groups of students, different grades, different content areas. They often have different backgrounds, years of experience, and personal and professional interests. As such, they should be provided with lots of instructional strategies and resources to help them make direct connections to their own teaching environments. Given the plethora and free resources that can be found online, curated aggregates of resources can be provided to the teachers. Time should be allotted during the PD training for them to examine and discuss these resources with their colleagues.

Transfer of Learning Through Reflection and Goal Setting

Reflection is essential for learning. In order to “make meaning” of an experience, the learner must have an opportunity to reflect on or process the experience. To help ensure that program participants transfer learning and training experiences into real-world applications, we must be intentional about both engaging the learners and creating opportunity for meaningful reflection. (https://www.e-volunteerism.com/volume-xvi-issue-1-october-january-2016/training-designs/enhance_learning)

Facilitators of teacher professional development need to be more intentional to include specific strategies to help insure that learning is transferred in teachers’ educational environments. Reflection and goal setting, two powerful transfer of learning strategies, should be built into teacher professional development.

A Recent Example

Because of on my request, my district gifted education supervisor purchased 3 sets/3 dozen Spheros. As a follow-up, he asked me to facilitate a teacher professional development workshop on their use.

The schedule for this afternoon workshop was:

  1. Short Introductory video about Sphero in schools: Gain Attention and Provide a Context
  2. Orienting and Simple Driving the Sphero: Tinkering
  3. Using the Draw Program: Tinkering
  4. Video Tutorial and Practice of Simple Block Programming: Increasing Complexity
  5. Build a Project-Chariot or Tug Boat: Increasing Complexity and Instructional Resources
  6. Review Curricula for Use in the Classroom: Instructional Resources and Transfer of Learning
  7. Final Reflections – Sharing about one’s own processes and possible applications in one’s own classroom: Transfer of Learning Through Reflection and Goal Setting
  8. Email Exchange – for sharing how the use of Spheros are being implemented in the classroom: Transfer of Learning

The slide presentation used and shared with this group of teachers:


Workshop photos showing teacher engagement:

This slideshow requires JavaScript.

Design Challenge

leave a comment »

This year I have been focusing on design challenges and design thinking with my gifted elementary students, grades 2nd through 6th. Last semester I introduced a series of activities to have them explore, learn about, and interact with design thinking principles and strategies. For a description of those activities, see https://usergeneratededucation.wordpress.com/2016/09/25/introducing-design-thinking-to-elementary-learners/

To re-introduce design thinking again for this spring semester, this week I asked them to do the Extraordinaire Design Studio:

The Extraordinaires® Design Studio is a powerful learning tool, that introduces children to the world of design, teaching them the foundations of design in a fun and engaging way. Your clients The Extraordinaires® are over the top characters with extraordinary needs, it’s the job of your student to design the inventions they need to fit their worlds. Choose your design client, from a rap star to a vampire teen or even an evil genius plotting in his lair. Look at the exceptionally detailed illustrated character cards to learn more about them, their world and their needs. Once you’ve chosen your Extraordinaire, pick a design project. It could be a communications device for a soldier or a drinks carrier for a circus acrobat. https://www.extraordinaires.com/shop/the-extraordinaires-design-studio-deluxe

To play, the character cards are laid out and then the inventions or gadgets are randomly placed on the character cards. The learners can then select which character/invention pair for which they would like to design.

img_7444img_7438

After drawing out and labeling their inventions and gadgets, they took pictures of them and posted their images along with a short description on a blog post. Some example learner work follows:

Hoverchair 1.0

TJ selected a hover chair for an astronaut.

wm1c3dlvto2omlmtmnog_7a1ddb70-4b34-4bed-be97-4af22de0ccb82017-01-15_1514

Le Phone

Sebastian selected a communication device for a fairy.

img_74462017-01-15_1505

Bearded Flask

Will selected a drink carrier for a wizard.

img_74472017-01-15_1128

This activity was a high interest, high engagement, high yield instructional task. Some learners had a little trouble getting started but once they did, their designs and inventions were fantastic. I think the fanciful nature of the cards helped engagement. The company has a free app to go along with their set for the designs to be uploaded and described. This app did not do what was promised so I cannot recommend its use.

What I think this type of design challenge does especially well is to introduce the idea that design thinking often encompasses designing a specific type of product for a specific type of client. It does a good job of introducing learners to the core of the design thinking process:

The Design Thinking process first defines the problem and then implements the solutions, always with the needs of the user demographic at the core of concept development. (http://dschool.stanford.edu/redesigningtheater/the-design-thinking-process/)

This set does cost some money but there are other free options:

  • Maker Education Card Game that I created
  • Destination Imagination Instant Challenge

Maker Education Card Game

This game, which I first introduced in the Maker Education Card Game, is a card game that ends with the makers making something based on selected cards. Each maker picks a card from each of the three categories:

  1. The Thing or Process
  2. The Product
  3. The Population.

For example, a maker may choose, Create a Blueprint from The Thing or Process category; a New Toy from the Product category; and Adults from the population category meaning the maker would create a blueprint for a new toy for adults. The educator and makers can choose whether it is a “blind” pick or one in which the makers see their options. (Note – I would love to increase options in all categories. If you have additional card ideas, please leave them in the comments section).

makercardgame.jpg

makercardgame2

makercardgame3.jpg


Destination Imagination Instant Challenges

Destination Imagination offers similar design challenges

The Destination Imagination program is a fun, hands-on system of learning that fosters students’ creativity, courage and curiosity through open-ended academic Challenges in the fields of STEM (science, technology, engineering and mathematics), fine arts and service learning. Our participants learn patience, flexibility, persistence, ethics, respect for others and their ideas, and the collaborative problem solving process. https://www.destinationimagination.org/mission-vision/

Combination Challenge

Randomly choose one or more items from A and one or more items from B, C, D or E and get busy.

2017-01-14_1338

Roll-A- Challenge

destination_imagination_roll-a-challenge1

Written by Jackie Gerstein, Ed.D.

January 15, 2017 at 8:10 pm

Computer Science: Robotics and Coding for Elementary Level Learners

leave a comment »

I absolutely love all of the new robotics toys that have been coming out for elementary age learners.  I have been using them for my summer maker camp, with my gifted education classes, for my upcoming Saturday morning program, and for my summer camp. One of my gifted girls noted, “Where do all of these robots come from?” I laughed and told her, “It’s actually has become one of my passions. Collecting them has become a major hobby of mine.”

I am an advocate of student-centric learning and giving them choices as to which instructional activities they would like to engage. After going through a series of coding activities, I give them the following choices with their goal of using five of the robotics to complete five of the tasks provided.

My robotics-type devices include:

  • Osmo Coding
  • Sphero
  • Ollie
  • Dash and Dot
  • Ozobot
  • Quirkbot
  • Makey-Makey
  • micro:bit
  • mbot
  • Adafruit Circuit Playground

Binary Bracelets: Introduction to Coding

keyimg_7671

The craft activity involves letting the students make a stylish necklace for themselves, where their names are spelled out in binary using black and white beads. See https://bycommonconsent.com/2014/10/19/activity-day-girls-craft-idea-binary-code-necklace/ for further directions.


Board Games to Teach Coding: Introduction

coding-board-games-head

Several board games that teach children computer coding concepts have been brought out recently. They make a good complement to online learning games and enable techie kids to have some fun family time away from a computer screen. http://www.techagekids.com/2015/11/board-games-teach-coding-kids-teens.html

The Task:

After learning a little bit about Robot Turtles, Code Monkey Island, and CodeMasters, play one or two of them.


Breakout Edu’s Caught in the Code: Introduction to Coding

We are caught in an infinite loop! Someone has re-written our classroom code and we are stuck. We will keep having the same day over and over unless we can find the correct code to de-bug the system. The correct code has been locked in the Breakout EDU box – once we figure out the combos, we will can escape the loop and move forward. http://www.breakoutedu.com/caught-in-the-code

and/or

Breakout Edu’s Haspy & Lockit: Code Buddies

Haspy the Robot needs your help! She was helping her friend Lockit run an update when there was a power surge and her circuit board shorted out. Unfortunately, this scrambled Lockit’s motherboard, flashed a few of her circuits, and wreaked havoc with her logic. Even though Haspy has the owner’s manual and has read what she needs to do, she is still a little confused. She needs your knowledge of loops, algorithms, and coding to help her fix Lockit’s code and reboot her system.

The Task:

The teacher will walk the group through this task.


Coding a Lego Maze

Level-4-of-Coding-a-LEGO-Maze

The LEGO mazes, which can be solved with “code” using paper rather than a computer, illustrate 4 levels of difficulty and include a variety of programming concepts (https://researchparent.com/coding-a-lego-maze/).

The Task:

The teacher will assist the learners in setting up and choosing the level most appropriate for them.


Code.org: Introduction to Coding

Code.org® is a non-profit dedicated to expanding access to computer science, and increasing participation by women and underrepresented minorities. Our vision is that every student in every school should have the opportunity to learn computer science, just like biology, chemistry or algebra. https://code.org/about

The Task:

As an introduction to robotics and computer science, do a few hours of tutorials via Code.org. The site, itself, offers a number of different tutorials, within their Hour of Code page – https://code.org/learn. Feel free to do the ones that look interesting to you.


Scratch Tutorials

2019-06-13_1737-1

With the Scratch Tutorials, kids learn to code as they create interactive games, stories, music, and animations. Each card features step-by-step instructions for beginners to start coding with Scratch. The front of the card shows an activity kids can do with Scratch—like animating a character or keeping score in a game. The back shows how to put together code blocks to make the projects come to life! Along the way, kids learn key coding concepts, such as sequencing, conditionals, and variables (https://scratch.mit.edu/projects/editor/?tutorial=all).

The Task:

Complete a full series of two of the projects.


CoSpaces: Introduction to Coding

The Task:

After creating an account at CoSpaces using your school gmail, create a scene and use their Block coding to animate the people and objects in your scene. How-to directions can be found at https://youtu.be/0x-jdrwE7Ng.


Osmo Coding Awbie and Coding Jam

Osmo Coding uses hands-on physical blocks to control Awbie, a playful character who loves delicious strawberries. Each block is a coding command that directs Awbie on a wondrous tree-shaking, strawberry-munching adventure. https://playosmo.com/en/coding/

Kids love music, right? Now they can compose their own by arranging Osmo’s Coding Blocks into patterns and sequences. So it’s happy, hands-on play, and an awesome way to introduce Coding. Rock On! https://www.playosmo.com/en/coding-blocks/

The Task:

Play each game for 30 minutes and use each of the types of coding blocks during that time period.


Sphero and Ollie

“The app enabled ball that does it all” – that’s the tag line for Sphero 2.0. Sphero is robotic ball that connects to your smartphone or tablets over Bluetooth.  It has built in multi-color LEDs that gives it light effect in combination of colors. It is waterproof, too. The free SPRK education program (which can be used with both Sphero and Ollie) has series of lab exercises to teach kids programming and robotics concepts. http://getstemgo.com/toys/sphero-and-ollie-robots-all-you-need-to-know-review/

The Task: The Maze

Program the Sphero or Ollie with the SPRK Lightning Lab app to navigate your own original maze made out of obstacles and materials in the learning environment. To complete this challenge, you must gather data about the best route through a maze and figure out how to build a program so Sphero can successfully navigate through the mayhem. More about this lesson can be found at https://sprk.sphero.com/cwists/preview/177x.

The Task: Painting with Sphero

Using a large piece of paper, different types of finger paints, the Sphero with the nobby cover, and the Lightening SPRK app, create a Jackson Pollack type painting. The full lesson plan can be found here – https://sprk.sphero.com/cwists/preview/152-painting-with-spherox

A “cleaner” alternative is to do a light painting with the Sphero using a long exposure app – see https://sprk.sphero.com/cwists/preview/78-light-paintingx

The Task: Battlebots

With a partner, create a Battlebot out of the Sphero or Ollie, cardboard, Popsicle sticks, and skewers. Challenge another team or two to a Battle. Last team with a balloon intact wins.

More lessons can be found at https://sprk.sphero.com/cwists/category


Dash and Dot

Dash & Dot are real robots that teach kids to code while they play. Using free apps and a compatible tablet or smartphone, kids learn to code while they make these robots sing, dance and navigate all around the house. Sensors on the robot mean they react to the environment around them. https://www.makewonder.com/

The Task: Rolling the Code

Using the Blockly app, complete the Dash and Dot Robots: Rolling for Code activity as described in http://www.thedigitalscoop.com/the_digital_scoop/2015/01/dash-and-dot-rolling-for-code.html

6a0120a8cae999970b01b7c72f30e5970b-320wi

The Task: The Xylophone

Using the Xylophone and Xylo app, program Dash to play at least three songs.

ddr-007_s5_full


Ozobot

Control Ozobot with colors! Draw OzoCode color codes on paper or a tablet and Ozobot uses optical sensors to respond—spinning, speeding up and more at your command. It comes with an OzoCode chart and over 20 games and activities. Color coding masters can move on with free Ozobot apps and the OzoBlockly editor, which introduces block-based programming. http://ozobot.com/

The Task:

After playing with the Ozobot color based coding, learn how to use Ozoblocky – http://ozoblockly.com/.  Teach two other learners how to use it.


Quirkbot

Quirkbot is a microcontroller toy that anyone can program. It is compatible with the open construction toy Strawbees and can be used along with readily available materials like regular drinking straws, LEDs, and hobby servos (motors) to create a wide variety of hackable toys. Let your creations express themselves and interact with their environment through sound, light and motion. https://www.kickstarter.com/projects/1687812426/quirkbot-make-your-own-robots-with-drinking-straws

The Task:

Go through the tutorials found at https://code.quirkbot.com/tutorials/getting-started/ and then build at least one of the Quirkbots found at https://www.quirkbot.com/build. Teacher’s guide can be downloaded: quirkbot-educators-guide-v0-9


Makeblock mbot

mbot_爆炸图_EN

From the outset mBot, with its big adorable eyes and cute smiley face, has enthralled more than 4.5 million children worldwide. mBot is an educational playmate for children learning to build and program, and an excellent educational aid for teachers in STEAM lessons. mBot gets children to engage both their hands and their brain, encouraging them to exercise their interdisciplinary abilities while allowing them to experience the endless fun of creation at the same time (https://www.makeblock.com/steam-kits/mbot).

The Task:

Use the block coding via the app to make the mbot do at least 5 different things.


Parrot Drone

Parrot Airborne Cargo Mars is a robust, impact-resistant minidrone that can be customized in an instant. Quick flights and unlimited scenarios! Our nifty drones are packed with all the fun in the world and additional interactive opportunities : they offer unlimited learning possibilities in STEM and coding!  https://www.parrot.com/us/minidrones/parrot-airborne-cargo-mars#learn-code-with-your-drone

The Task:

To use Parrot Blockly – https://activities.parrot.com/blockly–  and do two of the projects found at https://activities.parrot.com/cwists/category.


Makey-Makey

Using the MaKey MaKey you can make anything into a key just by connecting a few alligator clips. The MaKey MaKey is an invention kit that tricks your computer into thinking that almost anything is a keyboard. This allows you to hook up all kinds of fun things as an input. For example, play Mario with a Play-Doh keyboard, or piano with fruit!  https://www.sparkfun.com/products/11511

The Task: Hacked Poetry

Program the Makey-Makey with Scratch to read a poem – attach Makey Makey to four drawings made by pencil that represent that poem. Idea for this came from Makey Makey Hacked Poetry Month Part I.

The Task: A Small Group Project

With one or two of your classmates, do one of the projects found at http://makeymakey.com/guides/


micro:bit 

You can use your BBC micro:bit for all sorts of creations, from robots to musical instruments. This little device has a lot of features, like 25 red LED lights that can flash messages. There are two programmable buttons that can be used to control games. Your BBC micro:bit can detect motion and tell you which direction you’re heading in, and it can use a low energy Bluetooth connection to interact with other devices and the Interne. http://microbit.org/about/

The Task:

For this advanced option, do two of the projects featured on http://www.makereducation.com/microbit.html


Adafruit Circuit Playground (advanced)

Circuit Playground features an ATmega32u4 micro-processor with contains within it: 10 x mini NeoPixels – each one can display any rainbow color; Motion sensor; Temperature sensor; Light sensor; Sound sensor (MEMS microphone); Mini speaker (magnetic buzzer); 2 x Push buttons – left and right; Slide switch; 8 x alligator-clip friendly input/output pins. You can power and program it from USB. Program your code into it, then take it on the go. https://learn.adafruit.com/introducing-circuit-playground/overview

The Task:

For this advanced option, do one of the projects featured on https://learn.adafruit.com/category/circuit-playground.

Written by Jackie Gerstein, Ed.D.

January 2, 2017 at 11:41 pm

The Imperative of Experiential and Hands-On Learning

with 6 comments

For the past several decades, I have had my feet in both elementary education and teacher training and development. Regardless of age, grade level, and setting, I include hands-on and experiential learning as a integral part of my instruction. It is learning by doing with a reflective element which, in turn, creates conditions for deeply engaged learning.

Experiential education is a philosophy in which educators purposefully engage with learners in direct experience and focused reflection in order to increase knowledge, develop skills, clarify values, and develop people’s capacity to contribute to their communities. Throughout the experiential learning process, the learner is actively engaged in posing questions, investigating, experimenting, being curious, solving problems, assuming responsibility, being creative, and constructing meaning. (What is EE)

One of my favorite expressions is “Insanity is doing the same thing over and over again and expecting different results.”  There’s lots of lip service about closing the achievement gap, serving marginalized populations, helping students gain 21st century skills, and preparing students for STEM-related careers. The problem is that the school systems working toward these changes are using a factory model of education prevalent in the 19th and 20th centuries to do so. The changes that are being sought are not coming into fruition as different outcomes are expected out of doing more of the same thing. This is why I titled this post, The Imperative of Experiential and Hands On Learning. I believe that current instructional strategies need to be turned on their heads to achieve desired results and outcomes. Hands-on and experiential learning is used in some elementary schools but this diminishes as students get older. In too many high schools and colleges, instruction seems to occur through engaging the ears and sometimes the eyes (through visuals such as with slide presentations). Interestingly, though, a Study Finds 52% of U.S. Adults Say No. 1 Way to Learn is Through Active Participation, Followed by Visual Demonstration.

Some benefits of experiential and hands-on learning include:

  • Increases motivation and engagement.
  • Engages most of the senses.
  • Builds social emotional skills.
  • More likely to engage emotions.
  • Lots of brain activation.
  • Increases retention of learning.
  • Making mistakes becomes a natural part of the learning process.
  • Expands critical thinking skills.
  • Preparation for real life.

imperativeofhandson

Increases motivation and engagement.

Hands-on learning is often lots of fun; and having fun increases engagement and motivation.

Hands-on activities encourage a lifelong love of learning and motivate students to explore and discover new things (Bass, et al.).(Case for Hands-On Learning)

Learning by doing allows students to become personally invested in their own learning process. Becoming actively engaged in their education builds confidence, as the lessons require students to rely on their own abilities to obtain knowledge. That confidence and self-reliance inspires students to embrace the learning process and enthusiastically seek out additional knowledge.   (Importance of a Hands-On Experience in the Elementary Classroom)

Engages the senses.

Hands-on and experiential learning often is multi-sensory learning often engaging sight, hearing, tactile kinesthetic senses as learners participate in the educational activities.

By definition, hands-on learning requires students to engage in the education process using multiple senses, including sight, hearing and touch. Known as multisensory learning, the hands-on teaching strategy engages the senses in a way that promotes learning comprehension on multiple levels.  (Importance of a Hands-On Experience in the Elementary Classroom)

More likely to engage emotions.

The personal nature of experiential learning engages the students’ emotions as well as enhancing their knowledge and skills. When students see the concrete fruits of their labor, they experience greater gratification and pride, thus enhancing their enthusiasm for continued learning.  (The Benefits of Experiential Learning)

Lots of brain activation.

When you combine activities that require movement, talking, and listening, it activates multiple areas of the brain. “The more parts of your brain you use, the more likely you are to retain information,” says Judy Dodge, author of 25 Quick Formative Assessments for a Differentiated Classroom (Scholastic, 2009). “If you’re only listening, you’re only activating one part of the brain,” she says, “but if you’re drawing and explaining to a peer, then you’re making connections in the brain.”(Hands-On is Minds-On)

Builds social-emotional skills.

Lots of social-emotional skills are addressed with hands-on, experiential learning.  Some of the specific skills that hands-on learning address are:

  • Goal-setting
  • Tolerance for frustration
  • Persistence
  • Asking for help
  • Working with others

Increases retention of learning.

When it comes to what learning methods work best, everyone is different, but the survey clearly demonstrates that hands-on training is favored by most Americans. Students who practice what they’re learning in a hands-on environment can often retain much more information when compared with sitting passively in a lecture room, so it’s not a surprise that hands-on training is the overwhelming favorite. (Majority of Americans Prefer Hands-On Training in Educational Settings, Survey Finds)

There is a huge increase in the amount of information that is retained by students who are given the opportunity to practice what they are learning in the form of hands-on training. When students sit and listen passively in a lecture-style environment, they retain 20 percent of the information. When they are given the chance to practice what they have just learned, that percentage increases to 75 percent. (What Are the Benefits of Hands-on Training?)

Making mistakes becomes a natural part of the learning process.

Experiential learning involves trial by error. As students engage in hands-on tasks, they find that some approaches work better than others. They discard the methods that don’t work, but the act of trying something and then abandoning it – ordinarily considered a “mistake” – actually becomes a valuable part of the learning process. Thus, students learn not to fear mistakes, but to value them. (The Benefits of Experiential Learning)

Expands critical thinking skills.

The National Council for Excellence in Critical Thinking defines critical thinking as the “process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication.”  Hands-on learning allows students to experience a problem or task and make adjustments to improve outcomes. This “trial and error” exploration develops critical thinking and improves an understanding of abstract concepts that can be applied to real-life experience. (Improve Learning with Hands-on Activities)

Preparation for real life.

Experiential learning takes data and concepts and makes them “real” by applying them to hands-on tasks, with real results. As the student interacts with the information, it becomes real to them.

Many experiential learning projects are career-oriented, because they are, by nature, grounded in “real-world” activities. Through these activities, students start to discover and develop their own skills, aptitudes and passions. This discovery in turn sets them on a more defined path to college and careers. (The Benefits of Experiential Learning)

 

Written by Jackie Gerstein, Ed.D.

December 23, 2016 at 12:20 am

Games or Worksheets: Is there really a question about the choice?

with 2 comments

I work part time with gifted elementary students at two Title 1 schools where most of the students qualify for free or reduced lunches; and where they and/or their parents are learning English as a second language. What I quickly discovered about my students was that many were lacking in foundational skills in ELA and in math. Sadly, the instructional method used by way too many schools, especially those considered low performing like mine, is to give students lots of worksheets to teach such skills. I don’t like worksheets. I didn’t like them when I was an elementary student and don’t know too many elementary students who say, “I love doing worksheets.”

I have been using games in my classrooms (elementary and higher education) for decades. My use of games has included board games, team building and cooperative games, and more recently, video games. In order to help my gifted students learn some of the foundational skills, I integrate a variety of these games. This post is split into two parts:

  • Personal Observations About the Use of Games for Learning
  • Example Games Used to Teach and Reinforce

Personal Observations About the Use of Games for Learning

There has been a lot written about using games for learning. Research generally supports their use for learning:

Across 57 studies that compared teaching with a game to using other instructional tools, incorporating a game was more effective (SD .33). Using a game improved cognitive learning outcomes along with intrapersonal and interpersonal outcomes. Researchers looking at other collections of studies have found that games help students retain what they’ve learned.

I have written about the teacher as an ethnographer and the teacher as a reflective practitioner. In line with these beliefs, I have made my own personal observations about using games with gifted elementary students at low performing schools.

The Desire to Win is a Motivator

One of the biggest draw in the use of games is that students want to build their skills in order to win the game. Most, if not all, of my students embrace and engage in competitive games with the goal of winning. The need to win is a strong motivator; and to win they need to develop those skills. Even in group team building and cooperative learning, learning basic skills in order to be successful is a great motivator for learning basic skills. The same can’t be said of worksheets. The major reward for completing a worksheet is a grade from the teacher. For many students, this type of reward is not all that motivating.

A Sense of Fun and Play

When games are used for learning, excitement and joy become part of the learning process. My learners’ excitement is seen with their squeals of joy, big smiles on their faces, and jumping out of their seats when they succeed in the games.  Doing worksheets is not fun and they do not elicit playful responses. They is limited joy in learning through worksheets.

Learning Doesn’t Feel Contrived, Pushed, nor Painful

Most children play games and many adults do so, too. Games seem to be part of human existence.  Thus, when games are introduced into the learning environment, they feel natural to the learners. On the other hand, worksheets are not part of learners’ lives outside of the classroom. This translates into worksheets feeling contrived and pushed. Doing worksheets is often painful for the learners.

Noise is Expected

Games often include vocal elements. Learner voices and noise are expected and accepted when games are played. The opposite is true for doing worksheets. The expectation is that there is silence in the classroom while students work through their worksheets.

Increased and Engaging Repetition of Concepts

In general, repetition is needed to gain and remember basic skills. Usually this occurs through memorizing and repeating core skills. Games often offer the repetition of basic skills in a fun way as learners work towards completing the game challenges. Doing multiple worksheets can provide the repetition but not the engagement.

Learners Spontaneously Help One Another

Even in games that ask learners compete (see the second part of this post for examples), they often help one another out when one of their peers get stuck. This type of peer assistance is not promoted, may even be seen as cheating when students are completing worksheets.

Natural, Immediate, and Continual Formative Assessment

Most games offer continual feedback on learners’ performances. Games provide immediate feedback about the degree of success with a challenge as this function is built into the game mechanics. The same is not true for worksheets. The teacher is the one who often reviews and grades the worksheet. Feedback does not tend to be immediate nor continual with the use of worksheets.

Increased Engagement

The above characteristics equal increased engagement, and increased engagement often means increased learning. I have to wonder if one of the reasons my learners didn’t develop foundational skills is that they weren’t engaged in their learning processes; that they just went through the motions of doing the worksheets.

gamesvworksheets.jpg

Examples Games Used to Teach and Reinforce Basic Skills

Word Fluency

Scrabble Relay

In this game, students were separated into two groups. A pile of several sets of Alphabet bean bags were placed about 25 yards from the starting line. In a relay type game, group members ran one a time to pick up and bring back to the starting line one bean bag at a time. The relay continued until all of the bean bags were picked up.

img_7015img_7017

The groups were then asked to create as many words as they could using the letters they collected. Letters could be reused after a word was created. Point values were: one point for words of 2 to 4 letters; two points for words with 5 to 9 letters; and 3 points for words with 10 letters or more.

img_2218img_2229

Words with Friends

I created a class account with Words with Friends EDU:

The success of this game was better than I expected. The learners had never heard of nor played Scrabble so I was excited to see their level of engagement. They loved challenging one another; learning how the point values worked; and exploring the power words and their definitions.

Basic Number Sense

Similar to the word fluency games, I have been using a variety of both analog and digital games to increase my learners’ knowledge and skill with basic addition, subtraction, multiplication, and divisions.

Some of the analog math games I’ve used include”

Some of the digital games I’ve used include:


Parting Shot: One of my gifted students yelled out this week during class (I meet with one group for a half a day and the other for a full day): I love coming to my gifted class. It is so much more fun than learning. On one hand, I was happy to hear how much he enjoys the class. On the other hand, I was saddened that: (1) he didn’t see our fun activities as learning, and (2) his regular classroom lacked such fun.

Written by Jackie Gerstein, Ed.D.

December 5, 2016 at 12:43 am

%d bloggers like this: