User Generated Education

Education as it should be – passion-based.

Archive for the ‘Education’ Category

Robotics and Computer Science for Elementary Level Learners

leave a comment »

I absolutely love all of the new robotics toys that have been coming out for elementary age learners.  I have been using them for my summer maker camp, with my gifted education classes, and for my upcoming Saturday morning program. One of my gifted girls noted, “Where do all of these robots come from?” I laughed and told her, “It’s actually has become one of my passions. Collecting them has become a major hobby of mine.”

I usually use them for an hour per week with my two groups of gifted learners.  I am an advocate of student-centric learning and giving them choices as to which instructional activities they would like to engage. For their robotics hour each week, I am giving them the following choices with their goal of using five of the robotics to complete five of the tasks provided.

My robotics-type devices include:

  • Sphero
  • Ollie
  • Dash and Dot
  • littleBits: Gizmos and Gadgets; Arduino
  • Ozobot
  • Quirkbot
  • Jimu Robot
  • Finch Robot
  • Makey-Makey
  • Osmo Coding
  • micro:bit
  • Adafruit Circuit Playground
  • Let’s Start Coding
  • Bloxels

Code.org: Introduction to Coding

Code.org® is a non-profit dedicated to expanding access to computer science, and increasing participation by women and underrepresented minorities. Our vision is that every student in every school should have the opportunity to learn computer science, just like biology, chemistry or algebra. https://code.org/about

The Task:

As an introduction to robotics and computer science, do a few hours of tutorials via Code.org. The site, itself, offers a number of different tutorials, within their Hour of Code page – https://code.org/learn. Feel free to do the ones that look interesting to you.


CoSpaces: Introduction to Coding

The Task:

After creating an account at CoSpaces using your school gmail, create a scene and use their Block coding to animate the people and objects in your scene. How-to directions can be found at https://youtu.be/0x-jdrwE7Ng.


Sphero and Ollie

“The app enabled ball that does it all” – that’s the tag line for Sphero 2.0. Sphero is robotic ball that connects to your smartphone or tablets over Bluetooth.  It has built in multi-color LEDs that gives it light effect in combination of colors. It is waterproof, too. The free SPRK education program (which can be used with both Sphero and Ollie) has series of lab exercises to teach kids programming and robotics concepts. http://getstemgo.com/toys/sphero-and-ollie-robots-all-you-need-to-know-review/

The Task: The Maze

Program the Sphero or Ollie with the SPRK Lightning Lab app to navigate your own original maze made out of obstacles and materials in the learning environment. To complete this challenge, you must gather data about the best route through a maze and figure out how to build a program so Sphero can successfully navigate through the mayhem. More about this lesson can be found at https://sprk.sphero.com/cwists/preview/177x.

The Task: Painting with Sphero

Using a large piece of paper, different types of finger paints, the Sphero with the nobby cover, and the Lightening SPRK app, create a Jackson Pollack type painting. The full lesson plan can be found here – https://sprk.sphero.com/cwists/preview/152-painting-with-spherox

A “cleaner” alternative is to do a light painting with the Sphero using a long exposure app – see https://sprk.sphero.com/cwists/preview/78-light-paintingx

The Task: Battlebots

With a partner, create a Battlebot out of the Sphero or Ollie, cardboard, Popsicle sticks, and skewers. Challenge another team or two to a Battle. Last team with a balloon intact wins.

More lessons can be found at https://sprk.sphero.com/cwists/category


Dash and Dot

Dash & Dot are real robots that teach kids to code while they play. Using free apps and a compatible tablet or smartphone, kids learn to code while they make these robots sing, dance and navigate all around the house. Sensors on the robot mean they react to the environment around them. https://www.makewonder.com/

The Task: Rolling the Code

Using the Blockly app, complete the Dash and Dot Robots: Rolling for Code activity as described in http://www.thedigitalscoop.com/the_digital_scoop/2015/01/dash-and-dot-rolling-for-code.html

6a0120a8cae999970b01b7c72f30e5970b-320wi

The Task: The Xylophone

Using the Xylophone and Xylo app, program Dash to play at least three songs.

ddr-007_s5_full


littleBits Gizmos and Gadgets

Explore the possibilities of inventing with the Gizmos & Gadgets Kit. The Bits components snap together with magnets, for quick alterations on the fly. Chock full of motors, wheels, lights, servos, and more. The kit boasts 13 littleBits and instructions for 16 inventions. https://www.microsoftstore.com/store/msusa/en_US/pdp/littleBits-Gizmos-amp-Gadgets-Kit-2nd-Edition/productID.5064612700

The Task:

Complete two of the projects from the invention guide, from the Invention App, and/or make your own invention. Download the Invention Guide – littlebits-ggk2-invention-guide.


Ozobot

Control Ozobot with colors! Draw OzoCode color codes on paper or a tablet and Ozobot uses optical sensors to respond—spinning, speeding up and more at your command. It comes with an OzoCode chart and over 20 games and activities. Color coding masters can move on with free Ozobot apps and the OzoBlockly editor, which introduces block-based programming. http://ozobot.com/

The Task:

After playing with the Ozobot color based coding, learn how to use Ozoblocky – http://ozoblockly.com/.  Teach two other learners how to use it.


Quirkbot

Quirkbot is a microcontroller toy that anyone can program. It is compatible with the open construction toy Strawbees and can be used along with readily available materials like regular drinking straws, LEDs, and hobby servos (motors) to create a wide variety of hackable toys. Let your creations express themselves and interact with their environment through sound, light and motion. https://www.kickstarter.com/projects/1687812426/quirkbot-make-your-own-robots-with-drinking-straws

The Task:

Go through the tutorials found at https://code.quirkbot.com/tutorials/getting-started/ and then build at least one of the Quirkbots found at https://www.quirkbot.com/build. Teacher’s guide can be downloaded: quirkbot-educators-guide-v0-9


Jimu Robot

Create a humanoid robot  with UBTECH’s Jimu Robot Meebot robot kit—and program it with the free Jimu Robot app on your iPhone or iPad. The kit’s six robotic servo motors give your robot smooth, life-like movement. Use the easy-to-follow 3D animated instructions on the Jimu Robot free app to build your MeeBot. Then employ the app’s intuitive programming function to devise an endless sequence of actions for him. http://www.apple.com/shop/product/HK962VC/A/ubtech-jimu-robot-meebot-kit

The Task:

Make a Jimu robot using the Jimu app.


Finch Robot

The Finch is a small robot designed to inspire and delight students learning computer science by providing them a tangible and physical representation of their code.  The Finch has support for over a dozen programming languages, including environments appropriate for students as young as five years old!  The Finch was developed to catalyze a wide range of computer science learning experiences, from an entry into the basics of computational thinking all the way to writing richly interactive programs. http://finchrobot.com/.

The Task:

Use Scratch Programming to, first, do the basics found at http://www.finchrobot.com/teaching/scratch-finch-basics, and second, to do one of the projects found at http://www.finchrobot.com/teaching/scratch.


Makey-Makey

Using the MaKey MaKey you can make anything into a key just by connecting a few alligator clips. The MaKey MaKey is an invention kit that tricks your computer into thinking that almost anything is a keyboard. This allows you to hook up all kinds of fun things as an input. For example, play Mario with a Play-Doh keyboard, or piano with fruit!  https://www.sparkfun.com/products/11511

The Task: Hacked Poetry

Program the Makey-Makey with Scratch to read a poem – attach Makey Makey to four drawings made by pencil that represent that poem. Idea for this came from Makey Makey Hacked Poetry Month Part I.

The Task: A Small Group Project

With one or two of your classmates, do one of the projects found at http://makeymakey.com/guides/


Osmo Coding

Osmo Coding uses hands-on physical blocks to control Awbie, a playful character who loves delicious strawberries. Each block is a coding command that directs Awbie on a wondrous tree-shaking, strawberry-munching adventure. https://playosmo.com/en/coding/

The Task:

Play the game for 45 minutes and use each of the types of coding blocks during that time period.


littleBits Arduino (advanced)

The Arduino Bit is a tiny computer called a microcontroller. It brings the power of programing to your littleBits circuits, allowing you to create complex sequences of actions and explore new levels of logic and timing. https://littlebits.cc/bits/w6-arduino

The Task:

For this advanced option, watch the getting started video at https://www.youtube.com/watch?v=FXQ9d3qJt3Q and then do one or more of the tasks found at http://littlebits.cc/inventions/explore?q=arduino&page=1&per_page=9.


micro:bit (advanced)

You can use your BBC micro:bit for all sorts of creations, from robots to musical instruments. This little device has a lot of features, like 25 red LED lights that can flash messages. There are two programmable buttons that can be used to control games. Your BBC micro:bit can detect motion and tell you which direction you’re heading in, and it can use a low energy Bluetooth connection to interact with other devices and the Interne. http://microbit.org/about/

The Task:

For this advanced option, do two of the projects featured on http://www.makereducation.com/microbit.html


Adafruit Circuit Playground (advanced)

Circuit Playground features an ATmega32u4 micro-processor with contains within it: 10 x mini NeoPixels – each one can display any rainbow color; Motion sensor; Temperature sensor; Light sensor; Sound sensor (MEMS microphone); Mini speaker (magnetic buzzer); 2 x Push buttons – left and right; Slide switch; 8 x alligator-clip friendly input/output pins. You can power and program it from USB. Program your code into it, then take it on the go. https://learn.adafruit.com/introducing-circuit-playground/overview

The Task:

For this advanced option, do one of the projects featured on https://learn.adafruit.com/category/circuit-playground.


Let’s Start Coding Base Kit (advanced)

We’ve made it easy to learn the fundamentals of all coding languages, like methods, functions, and statements.  Your code will control electronic lights, speakers, buttons, sensors, screens, and more. Follow 14 step-by-step lessons to get the basics down. Tinker with already-working programs. https://www.letsstartcoding.com/

The Task:

For this advanced option, start at https://www.letsstartcoding.com/start and then complete 6 lessons found at https://www.letsstartcoding.com/learn


Bloxels

Bloxels® is an innovative video game development platform that allows you to create your own video games. With easy-to-use physical and digital tools, you decide what the game looks like and configure how it is played. You tell the story of the characters and design their looks. You create the obstacles and the power-ups. http://kids.bloxelsbuilder.com/

Bloxels really isn’t a robotics nor coding platform, but because of the interactivity of physical objects with technology, I include it as part of my robotics kit.

The Task:

Watch the tutorials found at http://kids.bloxelsbuilder.com/full-tutorial and build a game that uses five rooms where each of those rooms include characters, backgrounds, hazards, and powerups.

Written by Jackie Gerstein, Ed.D.

January 2, 2017 at 11:41 pm

The Imperative of Experiential and Hands-On Learning

with 6 comments

For the past several decades, I have had my feet in both elementary education and teacher training and development. Regardless of age, grade level, and setting, I include hands-on and experiential learning as a integral part of my instruction. It is learning by doing with a reflective element which, in turn, creates conditions for deeply engaged learning.

Experiential education is a philosophy in which educators purposefully engage with learners in direct experience and focused reflection in order to increase knowledge, develop skills, clarify values, and develop people’s capacity to contribute to their communities. Throughout the experiential learning process, the learner is actively engaged in posing questions, investigating, experimenting, being curious, solving problems, assuming responsibility, being creative, and constructing meaning. (What is EE)

One of my favorite expressions is “Insanity is doing the same thing over and over again and expecting different results.”  There’s lots of lip service about closing the achievement gap, serving marginalized populations, helping students gain 21st century skills, and preparing students for STEM-related careers. The problem is that the school systems working toward these changes are using a factory model of education prevalent in the 19th and 20th centuries to do so. The changes that are being sought are not coming into fruition as different outcomes are expected out of doing more of the same thing. This is why I titled this post, The Imperative of Experiential and Hands On Learning. I believe that current instructional strategies need to be turned on their heads to achieve desired results and outcomes. Hands-on and experiential learning is used in some elementary schools but this diminishes as students get older. In too many high schools and colleges, instruction seems to occur through engaging the ears and sometimes the eyes (through visuals such as with slide presentations). Interestingly, though, a Study Finds 52% of U.S. Adults Say No. 1 Way to Learn is Through Active Participation, Followed by Visual Demonstration.

Some benefits of experiential and hands-on learning include:

  • Increases motivation and engagement.
  • Engages most of the senses.
  • Builds social emotional skills.
  • More likely to engage emotions.
  • Lots of brain activation.
  • Increases retention of learning.
  • Making mistakes becomes a natural part of the learning process.
  • Expands critical thinking skills.
  • Preparation for real life.

imperativeofhandson

Increases motivation and engagement.

Hands-on learning is often lots of fun; and having fun increases engagement and motivation.

Hands-on activities encourage a lifelong love of learning and motivate students to explore and discover new things (Bass, et al.).(Case for Hands-On Learning)

Learning by doing allows students to become personally invested in their own learning process. Becoming actively engaged in their education builds confidence, as the lessons require students to rely on their own abilities to obtain knowledge. That confidence and self-reliance inspires students to embrace the learning process and enthusiastically seek out additional knowledge.   (Importance of a Hands-On Experience in the Elementary Classroom)

Engages the senses.

Hands-on and experiential learning often is multi-sensory learning often engaging sight, hearing, tactile kinesthetic senses as learners participate in the educational activities.

By definition, hands-on learning requires students to engage in the education process using multiple senses, including sight, hearing and touch. Known as multisensory learning, the hands-on teaching strategy engages the senses in a way that promotes learning comprehension on multiple levels.  (Importance of a Hands-On Experience in the Elementary Classroom)

More likely to engage emotions.

The personal nature of experiential learning engages the students’ emotions as well as enhancing their knowledge and skills. When students see the concrete fruits of their labor, they experience greater gratification and pride, thus enhancing their enthusiasm for continued learning.  (The Benefits of Experiential Learning)

Lots of brain activation.

When you combine activities that require movement, talking, and listening, it activates multiple areas of the brain. “The more parts of your brain you use, the more likely you are to retain information,” says Judy Dodge, author of 25 Quick Formative Assessments for a Differentiated Classroom (Scholastic, 2009). “If you’re only listening, you’re only activating one part of the brain,” she says, “but if you’re drawing and explaining to a peer, then you’re making connections in the brain.”(Hands-On is Minds-On)

Builds social-emotional skills.

Lots of social-emotional skills are addressed with hands-on, experiential learning.  Some of the specific skills that hands-on learning address are:

  • Goal-setting
  • Tolerance for frustration
  • Persistence
  • Asking for help
  • Working with others

Increases retention of learning.

When it comes to what learning methods work best, everyone is different, but the survey clearly demonstrates that hands-on training is favored by most Americans. Students who practice what they’re learning in a hands-on environment can often retain much more information when compared with sitting passively in a lecture room, so it’s not a surprise that hands-on training is the overwhelming favorite. (Majority of Americans Prefer Hands-On Training in Educational Settings, Survey Finds)

There is a huge increase in the amount of information that is retained by students who are given the opportunity to practice what they are learning in the form of hands-on training. When students sit and listen passively in a lecture-style environment, they retain 20 percent of the information. When they are given the chance to practice what they have just learned, that percentage increases to 75 percent. (What Are the Benefits of Hands-on Training?)

Making mistakes becomes a natural part of the learning process.

Experiential learning involves trial by error. As students engage in hands-on tasks, they find that some approaches work better than others. They discard the methods that don’t work, but the act of trying something and then abandoning it – ordinarily considered a “mistake” – actually becomes a valuable part of the learning process. Thus, students learn not to fear mistakes, but to value them. (The Benefits of Experiential Learning)

Expands critical thinking skills.

The National Council for Excellence in Critical Thinking defines critical thinking as the “process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication.”  Hands-on learning allows students to experience a problem or task and make adjustments to improve outcomes. This “trial and error” exploration develops critical thinking and improves an understanding of abstract concepts that can be applied to real-life experience. (Improve Learning with Hands-on Activities)

Preparation for real life.

Experiential learning takes data and concepts and makes them “real” by applying them to hands-on tasks, with real results. As the student interacts with the information, it becomes real to them.

Many experiential learning projects are career-oriented, because they are, by nature, grounded in “real-world” activities. Through these activities, students start to discover and develop their own skills, aptitudes and passions. This discovery in turn sets them on a more defined path to college and careers. (The Benefits of Experiential Learning)

 

Written by Jackie Gerstein, Ed.D.

December 23, 2016 at 12:20 am

Games or Worksheets: Is there really a question about the choice?

with 2 comments

I work part time with gifted elementary students at two Title 1 schools where most of the students qualify for free or reduced lunches; and where they and/or their parents are learning English as a second language. What I quickly discovered about my students was that many were lacking in foundational skills in ELA and in math. Sadly, the instructional method used by way too many schools, especially those considered low performing like mine, is to give students lots of worksheets to teach such skills. I don’t like worksheets. I didn’t like them when I was an elementary student and don’t know too many elementary students who say, “I love doing worksheets.”

I have been using games in my classrooms (elementary and higher education) for decades. My use of games has included board games, team building and cooperative games, and more recently, video games. In order to help my gifted students learn some of the foundational skills, I integrate a variety of these games. This post is split into two parts:

  • Personal Observations About the Use of Games for Learning
  • Example Games Used to Teach and Reinforce

Personal Observations About the Use of Games for Learning

There has been a lot written about using games for learning. Research generally supports their use for learning:

Across 57 studies that compared teaching with a game to using other instructional tools, incorporating a game was more effective (SD .33). Using a game improved cognitive learning outcomes along with intrapersonal and interpersonal outcomes. Researchers looking at other collections of studies have found that games help students retain what they’ve learned.

I have written about the teacher as an ethnographer and the teacher as a reflective practitioner. In line with these beliefs, I have made my own personal observations about using games with gifted elementary students at low performing schools.

The Desire to Win is a Motivator

One of the biggest draw in the use of games is that students want to build their skills in order to win the game. Most, if not all, of my students embrace and engage in competitive games with the goal of winning. The need to win is a strong motivator; and to win they need to develop those skills. Even in group team building and cooperative learning, learning basic skills in order to be successful is a great motivator for learning basic skills. The same can’t be said of worksheets. The major reward for completing a worksheet is a grade from the teacher. For many students, this type of reward is not all that motivating.

A Sense of Fun and Play

When games are used for learning, excitement and joy become part of the learning process. My learners’ excitement is seen with their squeals of joy, big smiles on their faces, and jumping out of their seats when they succeed in the games.  Doing worksheets is not fun and they do not elicit playful responses. They is limited joy in learning through worksheets.

Learning Doesn’t Feel Contrived, Pushed, nor Painful

Most children play games and many adults do so, too. Games seem to be part of human existence.  Thus, when games are introduced into the learning environment, they feel natural to the learners. On the other hand, worksheets are not part of learners’ lives outside of the classroom. This translates into worksheets feeling contrived and pushed. Doing worksheets is often painful for the learners.

Noise is Expected

Games often include vocal elements. Learner voices and noise are expected and accepted when games are played. The opposite is true for doing worksheets. The expectation is that there is silence in the classroom while students work through their worksheets.

Increased and Engaging Repetition of Concepts

In general, repetition is needed to gain and remember basic skills. Usually this occurs through memorizing and repeating core skills. Games often offer the repetition of basic skills in a fun way as learners work towards completing the game challenges. Doing multiple worksheets can provide the repetition but not the engagement.

Learners Spontaneously Help One Another

Even in games that ask learners compete (see the second part of this post for examples), they often help one another out when one of their peers get stuck. This type of peer assistance is not promoted, may even be seen as cheating when students are completing worksheets.

Natural, Immediate, and Continual Formative Assessment

Most games offer continual feedback on learners’ performances. Games provide immediate feedback about the degree of success with a challenge as this function is built into the game mechanics. The same is not true for worksheets. The teacher is the one who often reviews and grades the worksheet. Feedback does not tend to be immediate nor continual with the use of worksheets.

Increased Engagement

The above characteristics equal increased engagement, and increased engagement often means increased learning. I have to wonder if one of the reasons my learners didn’t develop foundational skills is that they weren’t engaged in their learning processes; that they just went through the motions of doing the worksheets.

gamesvworksheets.jpg

Examples Games Used to Teach and Reinforce Basic Skills

Word Fluency

Scrabble Relay

In this game, students were separated into two groups. A pile of several sets of Alphabet bean bags were placed about 25 yards from the starting line. In a relay type game, group members ran one a time to pick up and bring back to the starting line one bean bag at a time. The relay continued until all of the bean bags were picked up.

img_7015img_7017

The groups were then asked to create as many words as they could using the letters they collected. Letters could be reused after a word was created. Point values were: one point for words of 2 to 4 letters; two points for words with 5 to 9 letters; and 3 points for words with 10 letters or more.

img_7042img_7036

Words with Friends

I created a class account with Words with Friends EDU:

The success of this game was better than I expected. The learners had never heard of nor played Scrabble so I was excited to see their level of engagement. They loved challenging one another; learning how the point values worked; and exploring the power words and their definitions.

Basic Number Sense

Similar to the word fluency games, I have been using a variety of both analog and digital games to increase my learners’ knowledge and skill with basic addition, subtraction, multiplication, and divisions.

Some of the analog math games I’ve used include”

Some of the digital games I’ve used include:


Parting Shot: One of my gifted students yelled out this week during class (I meet with one group for a half a day and the other for a full day): I love coming to my gifted class. It is so much more fun than learning. On one hand, I was happy to hear how much he enjoys the class. On the other hand, I was saddened that: (1) he didn’t see our fun activities as learning, and (2) his regular classroom lacked such fun.

Written by Jackie Gerstein, Ed.D.

December 5, 2016 at 12:43 am

What are the characteristics of high performing schools?

leave a comment »

I am in the unique position of having several types of education jobs. I teach online graduate courses in educational technology to in-service teachers. I am a cohort facilitator for student teachers; and I am a part-time gifted teacher of elementary students at two different elementary schools that serve Kindergarten through 6th grade students. Out of the 16 elementary schools in my town, these two schools have some of the lowest end-of-year standardized test scores in the entire district; are composed of 85% to 90% Hispanic students; have a high percentage of English Language Learners; and all students on free or reduced lunch. These statistics present a dire picture, don’t they?

I tell my student teachers that when they enter new schools for possible employment, they should be able to see and feel the culture of the school almost immediately upon entering the front doors. Because of this belief, I decided to do a photo essay of the artifacts found on the hallway walls at the schools where I teach:

This slideshow requires JavaScript.

Because of the variety of my jobs as well as being an active reader and contributor to social media, I do a lot of thinking and reading about the qualities of high performing schools. Again, the data shows that I work at very low performing schools, but how are intangibles measured? How are the following characteristics, which I see, hear, and feel at both of my schools, measured and quantified?

  • A positive school climate
  • A safe school climate
  • Dedicated teachers who love teaching and their students
  • Creative teachers
  • Students enjoyment of being at school and in learning
  • Student creativity and imagination
  • Lots of laughing and smiling students
  • The arts naturally integrated into content area learning
  • School walls filled with beautiful student artifacts

I wholeheartedly believe I am teaching in high performing schools.

Written by Jackie Gerstein, Ed.D.

November 17, 2016 at 1:24 am

Halloween Wars: An Interdisciplinary Lesson with a STEM, STEAM, Maker Education Focus

leave a comment »

For Halloween 2016, I did a version of Halloween Wars (a Food Network show) with my two classes of gifted elementary learners. I am sharing this lesson through my blog post as it reinforces how I approach lesson planning and teaching.

Background Information

Principles that drive my instructional approach. regardless of theme, include:

  • Instructional challenges are hands-on and naturally engaging for learners.
  • There is a game-like atmosphere. There are elements of play, leveling up, and a sense of mastery or achievement during the instructional activities.
  • The challenges are designed to be novel and create excitement and joy for learners.
  • There is a healthy competition where the kids have to compete against one another.
  • Learners don’t need to be graded about their performances as built-in consequences are natural.
  • There is a natural building of social emotional skills – tolerance for frustration, expression of needs, working as a team.
  • Lessons are interdisciplinary (like life) where multiple, cross-curricular content areas are integrated into the instructional activities.

These have been further discussed in A Model of Good Teaching?

goodteaching

Halloween Wars Lesson

For this Halloween Wars lesson, the goals included the following:

  • To work in a small group to create a Halloween scene using food items, cooked goods, LED lights, and miscellaneous materials.
  • To work as a small group to craft a story about their scene.
  • To introduce and reinforce ideas, concepts, and skills associated with maker education, STEM, and STEM.

Standards addressed during this lesson included:

  • Generate and conceptualize artistic ideas and work. (National Core Arts Standards)
  • Exercise flexibility and willingness to be helpful in making necessary compromises to accomplish a common goal; and assume shared responsibility for collaborative work, and value the individual contributions made by each team member. (21st Century Skills)
  • Apply scientific ideas to design, test,and refine a device that converts energy from one form to another. (Next Generation Science Standards)
  • Solve problems involving measurement and conversion of measurements. (CCSS.Math)
  • Write narratives to develop real or imagined experiences or events using effective technique, descriptive details, and clear event sequences. (CCSS.ELA-Literacy.W.5.3)
  • Publish or present content that customizes the message and medium for their intended audiences. (ISTE NETS for Students)

Time Frame: 3 to 4 hours

Procedures:

  • Learners were introduced to the lesson through the following presentation –

  • Learners were split into groups of 3 or 4 members, shown their materials, asked to come up with a team name, and sketch their designs.

img_6414img_6473

  • In their small groups, learners needed to work together cooperatively to make their display scenes using the materials provided.

img_6485img_6483

  • Learners made sugar cookies using a recipe projected on the Smartboard. They were asked to cut the recipe in half reinforcing math skills.

img_6437img_6443

  • LED lights, which learners connected to coin batteries, were placed decorated ping-pong balls and their carved pumpkin.

img_6453img_6501

img_6454

  • Finally, learners, in their small groups, worked together on a shared Google doc to compose their story. The story was displayed on the Smartboard and read aloud. One member made editing changes to grammar and spelling based on suggestions by their classmates. (This strategy is further discussed in Teaching Grammar in Context.) Here is one student group’s example:

Written by Jackie Gerstein, Ed.D.

October 31, 2016 at 12:11 am

A Fuller Framework for Making in Maker Education

with 3 comments

Background Information

I recently learned, for the first time, about Aristotle’s belief that there were three basic activities of humans: theoria (thinking), poiesis (making), and praxis (doing). Corresponding to these activities were three types of knowledge: theoretical, the end goal being truth; poietical, the end goal being production; and practical, the end goal being action (https://en.wikipedia.org/wiki/Praxis_(process)).

The Greek theoria, from which the English word “theory” is derived, meant “contemplation, speculation, a looking at, things looked at”.  The word theoria is derived from a verb meaning to look, or to see: for the Greeks, knowing was a kind of seeing, a sort of intellectual seeing (https://en.wikipedia.org/wiki/Theoria).

Poïesis is etymologically derived from the ancient Greek term ποιέω, which means “to make” (https://en.wikipedia.org/wiki/Poiesis).

Praxis (From ancient Greek: πρᾶξις) is the process by which a theory, lesson, or skill is enacted, embodied, or realized (https://en.wikipedia.org/wiki/Praxis_(process)). “Praxis” may also refer to the act of engaging, applying, exercising, realizing, or practicing ideas. Praxis may be described as a form of critical thinking and comprises the combination of reflection and action. Paulo Freire defines praxis “reflection and action directed at the structures to be transformed.”(https://en.wikipedia.org/wiki/Praxis_(process))

Implementing a Broader Framework of Making in Maker Education

All of this led me to think about how this would translate into a full spectrum of making in the context of maker educator. Having such a framework would help insure that learning from the making experience is more robust, not left up to chance. I believe a fuller spectrum or framework would including the following elements:

  • Play, Tinkering, Experimentation – This is uncensored, boundaryless, whimsical making. It can be considered free play.  This, in my mind, is the first part of of Poïesis which translated from Greek “to make”.  How this translates into practice is by providing learners with lots of making materials; and telling them to just dive in and play hard with those materials.
  • Framing or Frontloading the Making Experience – This is the introducing the making experience for more mindful and intentional making. It helps both the educators and learners to set purpose and intention for the making activity prior to actually doing it. This is discussed in Framing and Frontloading Maker Activities where I go in more detail how to frontload or frame the maker activities:
    • Using and Reviewing Essential Questions
    • Using Scenarios
    • Specifying Standards
    • Asking Questions Related To Personal Skills
    • Asking Questions to Help with Scaffolding and Sequencing the Activities
    • Asking Questions Related To Using Peer Support-Working Collaboratively
  • Mindful and Intentional Making – Once there is a familiarity with the making materials and processes,  making can become more mindful and intentional.This is the second part of poisis or the making process. Making becomes more goal-oriented, focused, and more results or product oriented (although process is still important).
  • Observing and Reflecting Upon Results – This is the theoria or thinking part of the process. After making, it is when makers step back away from their making to observe and reflect on their processes and results.”Being able to reflect is a skill to be learned, a habit to develop. Reflection requires metacognition (thinking about your thinking), articulation of that thinking and the ability to make connections (past, present, future, outliers, relevant information, etc.)” (Amplifying Reflection).
  • Critical Awareness and Analysis –  This is the praxis, the critical thinking component that combines reflection and action. It takes reflection to a deeper level by dissecting the making process to analyze what worked and didn’t work which, in turn, will inform future makes. This critical analysis should directly and strongly influence future making experiences – the action part.
  • Sharing to Elicit Broader Connections and Change – Given today’s ease of sharing via the Internet and social media, the action part of praxis has been expanded, in this framework, to include sharing out one’s makes, observations, reflections, and critical analyses to a broader audience. This can occur by writing about the making process, and/or by doing a photo essay, video, podcast to share via social media. By doing so, others can benefit from one’s make.

a-framework-for_17172814_ad53e9ef20a574d3e44d93f984241673d1c3da24

Written by Jackie Gerstein, Ed.D.

October 23, 2016 at 6:19 pm

Teaching Elementary-Level Learners About the Brain

with 2 comments

Judy Willis in How to Teach Students About the Brain writes:

If we want to empower students, we must show them how they can control their own cognitive and emotional health and their own learning. Teaching students how the brain operates is a huge step. Even young students can learn strategies for priming their brains to learn more efficiently.

Teaching students the mechanism behind how the brain operates and teaching them approaches they can use to work that mechanism more effectively helps students believe they can create a more intelligent, creative, and powerful brain. It also shows them that striving for emotional awareness and physical health is part of keeping an optimally functioning brain. Thus, instruction in brain function will lead to healthier learners as well as wiser ones.

Here is a run down of the learning activities I did with my gifted elementary students to teach them about their brains:

Introduction to the Brain

  • Learners played a concentration brain game I created. Cards were created that had parts of the brain images on one of the paired cards and the definitions on the other. Games cards included: cerebral cortex, frontal cortex, parietal lobe, temporal lobe, occipital lobe, cerebellum, limbic system, hypothalamus, amygdala, neuron, axon, dendrite, neurotransmitters, synapse. Students were asked to read aloud the definitions when they match a pair. An alternative is to play Neuro-Jeopardy found at http://faculty.washington.edu/chudler/jeopardy.html.

img_6319img_6323

Learning about the Brain Lobes

  • Learners completed a jigsaw puzzle I created about the brain lobes and their functions.

img_6303img_6309

  • Using the Smartboard, the interactive website, https://www.koshland-science-museum.org/explore-the-science/interactives/brain-anatomy, about the brain lobes was shown to the learners.
  • Using this website and brain anatomy posters on the wall as references, learners, in small groups, created their own model brains using dough (that they made themselves) for the lobes and sticky notes/toothpicks to label the lobes and their functions.

img_6341IMG_6353.jpg

img_6351img_6348

Learning About Neurons

  • Neurons were introduced to the learners through this Neuroscience for Kids webpage – https://faculty.washington.edu/chudler/synapse.html
  • Learners made their own neurons out of licorice, fruit roll ups, and min-Reese’s cups on top of wax paper and labeled the parts of the neuron on their wax paper. This was inspired by the Neuroscience for Kids webpage – http://faculty.washington.edu/chudler/chmodel.html.  Learners were then asked to show how their neurons would correctly connect to one another as they would be in the brain.

img_6361img_6377

stagimg_6397

Finishing Up with a Creative Writing Activity About the Brain

2016-10-21_1931

2016-10-21_1933

2016-10-21_1925

 

 

 

 

Written by Jackie Gerstein, Ed.D.

October 22, 2016 at 1:44 am

%d bloggers like this: