User Generated Education

Education as it should be – passion-based.

Search Results

Going On A STEM-Maker Journey WITH My Students

with 3 comments

Last semester, I worked with a few high school students to create a project for the New Mexico Governor’s STEM Challenge. Being a learner-centric, process-oriented educator (hence, the name of my blog – User Generated Education), I embraced the following practices during this project.

  • Learners selected and developed their problem statement and guiding question.
  • Learners naturally tapped into one another’s strengths, managing their strengths without any intervention from me. Some were good at problem conception, others at envisioning solutions, others at research, and still others at creating the graphics.
  • My role was that of resource provider and feedback provider. I shared and explained the challenge requirements, reviewed the qualities of valid websites, gave feedback on their research and written work, and provided them with materials and tools such as Arduinos.
  • Community resources were used reinforcing that communities contain experts – that teachers don’t have to be experts at everything. We visited the local makerspace so the learners could learn and use their 3d printers and laser cutter.
  • Given the nature of this project-based, problem-based format, grading was based strictly on class participation using the criteria of, “Worked on the project during class time.”

Although, I often approach my classroom instruction using the practices as specified above, this one took me even farther from a place of knowing. They selected CO2 emissions and a chemistry-based solution of which I knew very little, so I was not a content expert. We learned about this together. I had a little experience with Arduinos but not lots so I was not a technology expert. We learned a lot more about how these worked together. We went on this journey together and I loved being a co-learner with my students.

Here is a highlight video of their project:

Much to my chagrin, they did not win an award (19 awards were given to the 43 entries). Their rewards, though, cannot be overstated:

  1. They learned some concrete and practical skills from going to the local makerspace, and getting instruction on their 3D printers and laser cutter. They also helped them work out some difficulties they had troubleshooting problems with the Arduino part of the project.
  2. They experienced the rewards and frustrations of working on a months long project including persistence, having a growth mindset, dealing with failure, and following through with a project through its completion.
  3. One of the students has pretty much checked out of school. She was mostly fully engaged throughout the duration of this project.

Even though their excitement about attending and presenting their project was obvious during the hour long ride home as they spent that time brainstorming ideas for projects for next year’s Governor’s STEM Challenge.

Written by Jackie Gerstein, Ed.D.

January 13, 2020 at 1:24 am

A Maker Education PD Workshop

leave a comment »

I had the privilege of presenting a day long maker education workshop at Edutech Asia on November 7, 2019. I was excited about having teachers and other professionals from Singapore, Thailand, Philippines, Cambodia, India, Malaysia, and New Zealand attend. What follows are some details and highlights.

As they arrived in the morning, I asked them to access the workshop slides and create a name card lit up with an LED.

They then used these name cards to introduce themselves.

Next, they were provided with copper tape, coin batteries, LEDs, and Chibitronics’ circuit stickers along with instructions about how to make series and parallel circuits; and asked to create pictures from their circuits. Here is a video of some of the participants sharing their processes:

Then, they were asked to further reflect on their learning by playing my Maker Reflection Game.

They were then introduced to their next making segment in which they could pick to do one or more of the following projects:

  • Bristlebots
  • Gami-bots
  • More advanced paper circuits
  • micro:bit books
  • Makey-Makey Characters

I repeatedly encouraged them to take pictures throughout their making processes in order to document their learning.

To reflect on this making segment, they were introduced to several types of online educational technology creation tools to use for their reflective piece. I believe that reflection and assessment should be as fun, exciting, valuable, and informative as the making process itself. Here are some examples from the workshop:



Finally, they were instructed to create a poster using visuals and LEDs in their small groups about their day and how they can apply their learnings when they return to their work environments.

. . . and here are the slides provided to the participants:

Written by Jackie Gerstein, Ed.D.

November 18, 2019 at 2:36 am

Creating a New Makerspace at Our School

leave a comment »

I am beyond elated – our PreK-6 elementary school received monies, through our district’s Computer Science Resolution 2025, to create a STEAM (science, technology, arts, math) makerspace. I never thought our Title 1 school would get the opportunity to create such a space. I never thought I would get the opportunity to help create a fully equipped makerspace. A few of use spent the past few weeks rearranging our library so that one side contains our books and the other our STEAM materials.

We received the following items. Some were put out in the STEAM makerspace and some items the teachers will check out for use in their classrooms:

  • Dremel Laser Cutter (in makerspace)
  • Makedo Kits (in makerspace)
  • Strawbees (in makerspace)
  • Dash and Dot (in makerspace and can be checked out)
  • OSMO Coding (in makerspace)
  • Makerspace Kit (in makerspace)
  • BeeBot Robots (in makerspace)
  • Squishy Circuits (in makerspace)
  • Makey-Makeys (can be checked out)
  • littleBits Base Invent Kit (in makerspace)
  • micro:bits (3rd-6th grade teachers received their own sets)
  • Circuit Playground (can be checked out)
  • SAM Lab (can be checked out)
  • Green Screen (in makerspace)

Integrating Maker Education Activities Into the Curriculum

As we (the steering committee) envisioned adding a STEAM – Makerspace at our school, we realized that its success will be dependent on the teachers integrating these activities into their curriculum rather than an extra “recreational” activity.

Maker education needs to be intentional. It follows, then, for maker education to be brought into more formal and traditional classrooms as well as more informal ones such as with afterschool and community programs, it needs to be integrated into the curriculum using lesson plans to assist with this integration (Learning in the Making).


To assist our teachers with integrating maker education activities into the curriculum, I created the following Pearltrees aggregate of possible classroom lessons and activities for each of the materials – products we purchased for our school:

https://www.pearltrees.com/jackiegerstein/curriculum-integration/id27094864

In this post, I am also including the following lesson plan template from my book, Learning in the Making that can help with integrating maker education activities into the curriculum :

Written by Jackie Gerstein, Ed.D.

October 5, 2019 at 10:25 pm

Learning in the Making: The Role of the Educator as a Maker Educator

with 2 comments

I have been working with ASCD for the past few years to publish my book, Learning in the Making: How to Plan, Execute, and Assess Powerful Makerspace Lessons. It has finally been released for sale! Below is an except – Chapter 5: The Role of the Educator as a Maker Educator.


The process of bringing maker education into formal and informal educational settings involves different approaches and strategies than in a more traditional educational setting. As such, the roles of the educator as a maker educator are also different.

  • Lead Learner
  • Process Facilitator
  • Safe Environment Manager
  • Normalizer of Ambiguous Problem Finding and Solving •
  • Resource Provider
  • Technology Tutor
  • Relationship Enabler and Builder
  • Feedback Facilitator

Lead Learner 

The educator’s role has always been to model and demonstrate effective learning, but somewhere along the line, the educator’s major role became content and knowledge disseminator. Today, content is freely and abundantly available, and it is more important than ever to help learners in the process of how to learn.

In most traditional education settings, the emphasis is on what students “need” to learn, and little emphasis is given to teaching students how they should go about learning the content or what skills will promote robust and effective learning. John Dunlosky, a professor of psychology at Kent State University, stated that “teaching students how to learn is as important as teaching them content, because acquiring both the right learning strategies and background knowledge is important—if not essential—for promoting lifelong learning” (Dunlosky, 2013, p. 13 ). 

Because maker education is as much (or even more) about the processes of learning as it is about the products, it becomes important for educators to understand and model the processes— or the “how-to”—of maker education. This often requires teachers to express out loud the metacognitive strategies they use when 

In most traditional education settings, the emphasis is on what students “need” to learn, and little emphasis is given to teaching students how they should go about learning the content or what skills will promote robust and effective learning. John Dunlosky, a professor of psychology at Kent State University, stated that “teaching students how to learn is as important as teaching them content, because acquiring both the right learning strategies and background knowledge is important—if not essential—for promot- ing lifelong learning” (Dunlosky, 2013, p. 13 ).

Because maker education is as much (or even more) about the processes of learning as it is about the products, it becomes important for educators to understand and model the processes— or the “how-to”—of maker education. This often requires teachers to express out loud the metacognitive strategies they use when approaching and doing maker activities, including how they learn about the task at hand, find resources, develop an overall goal for the activity, organize and keep track of materials, develop and manage timeframes, and judge their success. Importantly, it also requires teachers to explain what they do when they struggle with a make. This will help learners emulate these learning processes when they work on their own maker projects. Figure 5.2 provides methods and strategies that can be used by the educator to model effective making processes that have the potential to benefit their learners.



If educators embrace the prospect of being a lead learner, then it naturally follows they should be lead innovators, too. Lead inno- vators model eight characteristics of the innovator’s mindset; they are empathetic, problem finders, risk takers, networked, creators, observant, resilient, and reflective (Couros, 2015). “Ultimately, what [innovation] really is about in education is creating new and better ways of learning, which is something educators should all get behind. If I can help more educators see themselves as innova- tors, and help them embrace this mindset, our students will have better opportunities in learning. . . . It is meant to not only help see change as something we embrace and model ourselves but help create the foundation where change is more likely to happen with others” (Larken, 2015, paras. 2, 3).

A common characteristic of making across settings, age levels, socioeconomic backgrounds, and genders is that it is taps into the innovation of the participating learners. When educators model innovation by trying new projects, new teaching procedures, and new technologies, they are not only showing and telling students that innovation is valued in their classrooms but also demonstrating a willingness to take risks often associated with innovation—especially in the sometimes noninnovative environment of traditional schools.

Process Facilitator

Another hallmark of maker education is that the making processes are equally important as the products created. The processes used to make something often carry over to future projects and products. To truly focus on the process—rather than on the products of learning—the educator needs to let go of expectations and preconceived notions about what the specific products students produce “should” look like.

This approach translates into several benefits for learners:

  • Learners are not limited by educators’ expectations or the expectations of a lesson or assessment developed by an out- side entity (e.g., textbook or testing company).
  • Learners’ engagement, motivation, curiosity, and excitement increase.
  • Learners learn to tolerate and embrace ambiguity.
  • Natural differentiation and individualization result.
  • Learners gain skills such as self-directed learning, taking ini- tiative, locating resources, and asking for help—all of which can be transferred to all learning endeavors.
  • It reflects and models how learning occurs outside of school.
  • Learners take an increased investment and pride in their work.
  • Learners develop both a sense of confidence and a sense of competence.

Safe Environment Manager

An educator’s role as safe environment manager is a two-pronged one. First, teachers must ensure that the learning environment is physically safe. Because a maker environment often contains lots of tools, ranging from scissors and knives to hot glue guns to power tools, the maker educator must establish an environment in which learners’ physical safety is of primary concern. Second, teachers must make sure that learners also feel safe emotionally— that they are willing to take risks and know that their ideas will be accepted and valued by everyone in the classroom. There are some general guidelines for creating a physically safe makerspace. Consider the following as you set up your own maker environment:

  • Research how the tools you plan to use in your maker pro- gram operate and the safety procedures associated with them.
  • Teach students how to safely use all of the tools in the maker area, including seemingly “simple” tools such as scissors and hot glue guns. Don’t make any assumptions.
  • Develop and review procedures about what to do if students notice an unsafe practice or if there is a medical emergency.
  • Establish behavioral expectations that students know and understand. These will be guided by the age of your students but can include rules such as no horseplay and keep your hands to yourself.
  • Establish, post, and teach clean-up procedures.

More information about creating a physically safe makerspace can be found at https://makezine.com/2013/09/02/safety-in-school-makerspaces/.

Because making often involves taking risks, dealing with failure, asking for help, getting and receiving feedback, and sharing projects with peers, it is important that you also establish a work-learning environment that is emotionally safe for all students. This should be thought out and factored into your maker program from the beginning to develop a healthy sense of community. This can be accomplished through team-building activities with a STEM or maker education focus. Activities such as these help students learn to work collaboratively, communicate, and problem solve with one another. Students also learn to support one another.

As a safe environment manager, teachers should teach and model what emotional safety looks, sounds, and feels like in the learning environment. It then becomes the students’ responsibility to maintain and reinforce that emotional safety. Comments that reflect an emotionally safe and supportive environment include

  • “Your effort shows and is admirable.”
  • “I like the way you are helping and supporting one another.”
  • “Failure is OK; just give it another attempt.”

Students should be acknowledged when they are heard using such comments.

Normalizer of Ambiguous Problem Finding and Solving

Another difference between traditional education and maker education is that the former too often presents problems that have a single, correct answer, whereas maker education embraces ill-de- fined problems that don’t often have obvious or “correct” answers. Iteration and related failure often accompany maker projects that are based on ill-defined problems and solutions. Failure often has a negative connotation in education, but within the maker mindset, failure is celebrated. Adam Savage, former host of the popular TV show Mythbusters, often wears a shirt that says, “Failure is always an option.” Maker educators should normalize iteration and
failure by emphasizing and reemphasizing the idea that ill-defined and ambiguous problems and solutions are part of the making process—and real life.

Resource Provider

Because there is so much free information available online, the 21st century educator needs to be a curator of content. As a curator, the maker educator locates and vets resources, especially those that will be used by younger students. These resources can include YouTube videos; tutorials from companies such as Spark- fun, Make: Magazine, Instructables, and Adafruit; relevant books and magazines; social media accounts and hashtags (e.g., #mak- ered, #stem); and online communities, such as Facebook groups. Since the goal is to have learners use self-directed or heutagogical practices, the educator—as a maker educator—should offer resources as suggestions based on individual learners’ projects.

Nevertheless, students should make the final decision about which resources to use and to what degree they want to use them. The educator as a resource provider means that he or she becomes a coach or a mentor to learners. Educators are the adult experts in the room, and learners will often go to the educator for assistance, especially when they get stuck on a problem or need feedback. “The best coaches encourage young people to work hard, keep going when it would be easier to stop, risk making potentially painful errors, try again when they stumble, and learn to love [their learning]” (Tomlinson, 2011, p. 92).

The educator as a resource provider also implies that he or she has multiple skill sets—expertise in the process of learning, exper- tise in how to navigate online environments, and the ability to mentor learners during their maker education experiences. They need to model how to vet the resources and determine their use- fulness and value. They scaffold resource curation and ultimately release responsibility to students as they become more skilled at finding and vetting their own resources.

Technology Tutor

For learner agency and self-directed learning to occur, educators need to keep abreast of current and emerging technologies. There is an assumption that young people are universally digitally savvy and know how to use every form of emerging technology. However, teachers “are increasingly finding that their students’ comfort zone is often limited to social media and internet apps that don’t do much in the way of productivity” (Proffitt, 2012, para. 2).

Technology can dramatically enhance maker experiences since it provides access to resources and tutorials. It also provides a means for learners to share their processes and products. With this in mind, the maker educator can help learners find resources (as previously discussed) and teach them how to use educational technology such as blogs, videos, video creation tools, e-books, podcasts, collages, sketches, and Google apps to document and share their learning.

Relationship Enabler and Builder

Another important hallmark of the maker movement is its strong focus on community. The maker education community, both the in-person and broader global one, is overwhelmingly based on sharing with and learning from one another. Though not every maker shares his or her knowledge or creations, the existence of large online communities shows that many do. People share for various reasons: to exchange information, educate others, get feed- back, and feel connected. This type of collaboration often comes naturally in a making environment, but educators can and should facilitate it through asking—sometimes coaxing—learners to share their ideas, opinions, resources, successes, and failures with other maker learners.

To help facilitate this process, maker educators can ask stu-dents to share what they’ve accomplished so far with their project, where they think things are going in the project, and what issues they have experienced or anticipate experiencing. Students can also document and share their processes and findings in a manner that allows both other students in the class and the larger maker community to review and comment.

Feedback Facilitator

Learners getting feedback on their work is always valuable and important—even more so in the maker environment. Indeed, the maker environment should be rich in feedback. As a feedback facilitator, maker educators not only provide learners with feedback about their maker projects but also teach and facilitate a process for learners to give and receive feedback to one another. Too many educational environments don’t actively teach learners methods and strategies for giving and receiving feedback. Since one of the characteristics of the maker environment is that is it community based, facilitating a feedback process supports and reinforces this sense of community. Because making is often an iterative process, feedback from other community members often facilitates and accelerates that process.

Promises to My Learners as a Maker Educator

Because maker education is so different from traditional education, and because the maker educator’s roles are also so different, I developed the following promises to my learners as a facilitator of their learning as makers:

  1. I promise to make the making environment positive, joyful, and physically and emotionally safe so you feel safe enough to take risks, ask questions, make mistakes, and test things out.
  2. I promise to provide you with resources and materials that help you create, make, and innovate.
  3. I promise to respect and support your unique ways of think- ing, learning, creating, and interacting with others.
  4. I promise to work with you to create learning experiences that are personally relevant to you.
  5. I promise to support and help you understand and navigate the ups and downs, the mistakes and failures, and the trials and errors associated with making.
  6. I promise to give you time and opportunities to collaborate and share with other makers (of all ages).
  7. I promise to provide you with positive feedback on things you can control—such as effort, strategies, and behaviors.
  8. I promise to encourage you to critically think, formulate questions of your own, and come up with your own conclusions.
  9. I promise not to intervene with your learning process unless you ask me to do so.
  10. I promise to support you as you embrace the joy of creating, playing, innovating, and making.

Written by Jackie Gerstein, Ed.D.

September 15, 2019 at 5:55 pm

Expert Mentors: A Professional Development Model for STEM and Maker Education Implementation

leave a comment »

Implementing Maker, STEM, STEAM Education

In order to prevent STEM and maker education from becoming a flavor of the month, there needs to be specific strategies provided to educators on how to embed STEM and maker activities into their curriculum. A good number of educators have not received training on how to integrate activities into their classroom practices which entail resource heavy, hands-on learning.

One of the elementary schools where I work is going to implement maker education this coming school year. In a discussion with the principal and a small number of teachers, we realized that some of the teachers will be resistant due to their lack of experience with the activities, resources, and tools related to maker education, and frankly, their fear of doing something as foreign as maker education.

A key to increase their comfort with and chances for implementing these activities is to provide them with professional development opportunities, but the PD needs to be designed based on research.

Professional Development

Teacher professional learning is of increasing interest as a critical way to support the increasingly complex skills students need to learn in order to succeed in the 21st century. Sophisticated forms of teaching are needed to develop student competencies such as deep mastery of challenging content, critical thinking, complex problem solving, effective communication and collaboration, and self-direction. In turn, effective professional development (PD) is needed to help teachers learn and refine the instructional strategies required to teach these skills. (Effective Teacher Professional Development).

The Learning Policy institute examined rigorous studies that have demonstrated a positive link between teacher professional development, teaching practices, and student outcomes. They discovered that not all professional development experiences are equal and that effective PD has specific characteristics. Their findings included:

Active learning provides teachers with opportunities to get hands-on experience designing and practicing new teaching strategies. In PD models featuring active learning, teachers often participate in the same style of learning they are designing for their students, using real examples of curriculum, student work, and instruction. 

Curricular models and modeling of instruction provide teachers with a clear vision of what best practices look like. Teachers may view models that include lesson plans, unit plans, sample student work, observations of peer teachers, and video or written cases of accomplished teaching.

Effective professional development provides teachers with adequate time to learn, practice, implement, and reflect upon new strategies that facilitate changes in their practice. As a result, strong PD initiatives typically engage teachers in learning over weeks, months, or even academic years, rather than in short, one-off workshops (Effective Teacher Professional Development).

After attending the New Mexico Computer Science week whereby engineering college students acted as mentors for the participating teachers, I realized that having experts in the classroom working directly with educator can be a great form of professional development. In this case, it was the engineering college undergraduates but it could also be trainers from STEM-related organizations or other educators who have developed their STEM instructional practices. This model has the potential to discuss the properties of effective professional development discussed above. Mainly, educators would be able to see STEM and maker instructional practices being modeled.

Benefits

  • Directly observing how the expert interacts with their content and with the learners.
  • Experiencing the benefits of team teaching – pairing a content expert with an education.
  • Learning how to troubleshoot when the activities don’t work as planned.
  • Assisting both the educator and their learners to see failure as iteration and growth opportunities.
  • Getting to see how learners respond to the hands-on experiences . . . often with excitement and engagement.

Implementation Suggestions

Some suggestions for implementing this form of professional development follow. It obviously is just a beginning.

  • Train expert mentors in interacting with learners using hands-on activities.
  • Train and plan meetings between educators and mentor experts making sure that they include collaborative and active learning strategies.
  • Needs to occur over time through multiple sessions – not a single time experience.
  • Include educator reflection and follow-up as an integral component of the professional development.

An Example

An example of a mentoring program is my local area is the New Mexico STEM Mentor Collective.

The Northern New Mexico STEM Mentor Collective, funded by NSF INCLUDES (Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science) seeks to raise aspirations and expectations in Middle & High School STEM (Science, Technology, Engineering and Mathematics) topics by training and planting (in local schools and libraries) a paid STEM Mentor Corps comprised of caring, exemplary NNMC (Northern New Mexico College) undergraduates

Even though it is designed to bring Engineering undergraduates into the classroom to provide young people with mentors, I contend it could also be used to help educators learn how to implement STEM and maker education activities. I am planning to work with my principal this coming school year to help develop this as a model of professional development.

Written by Jackie Gerstein, Ed.D.

June 9, 2019 at 10:04 pm

Maker-Enhanced Writing Workshop: Character Development

leave a comment »

benefits-of-interdisciplinary-learning

Readers of my blog know my thoughts and feelings about effective student learning. I have written blogs on:

This month I started a maker-enhanced writing workshop with a group of gifted 3rd through 6th grade students. As with all of my lessons, I strive to practice what I preach in my blog posts – being interdisciplinary; using technology to enhance their work; and making, creating, innovating, and inventing.

Standards Addressed

21st Century Skills

  • Elaborate, refine, analyze and evaluate their own ideas in order to improve and maximize creative efforts.
  • Create new and worthwhile ideas (both incremental and radical concepts).
  • Elaborate, refine, analyze and evaluate their own ideas in order to improve and maximize creative efforts.
  • Develop, implement and communicate new ideas to others effectively.
  • Articulate thoughts and ideas effectively using oral, written and nonverbal communication skills in a variety of forms and contexts.

Next Generation Science Standards

  • Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
  • Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Common Core State Standards – ELA

  • Write narratives to develop real or imagined experiences or events using effective technique, relevant descriptive details, and well-structured event sequences.

National Core Arts Standards

  • Students will generate and conceptualize artistic ideas and work.

ISTE Standards for Students

  • Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.

National Novel Writer’s Month Young Novelist’s Workbook

For this project, I use parts of the National Novel Writer’s Month Young Novelist’s Workbook found at https://ywp.nanowrimo.org/pages/educator-resources.

National Novel Writing Month (NaNoWriMo) is a fun, empowering approach to creative writing. The Young Writers Program (YWP) allows 17-and-under participants to set reasonable-but-challenging individual word-count goals.

The YWP also helps K–12 educators facilitate NaNoWriMo in schools, libraries, and community centers around the world. We provide virtual classroom spaces on our site, as well as student workbooks, Common Core-aligned curricula, and free motivational materials (https://ywp.nanowrimo.org/).

Since I work with 3rd through 6th graders, I use the one for elementary students. I also like the way it is formatted with lots of places to insert one’s own answers and ideas.  Here is the PDF – elementary_school_workbook_ed4_INTERIOR.

Character Development

After some introductory information, the workbook jumps into character develop. I like having my learners begin by developing their characters. They did so by:

  • Describing their character (pages 11 – 25 in the workbook).
  • Drawing a picture of their characters.
  • Creating a more artistic version of their character using additional art materials.
  • Posting a description and image of their character onto Kidblog.
  • Using Scratch and Makey Makey to describe the main characteristics of their characters.

Example Character Description and Artistic Creation

2019-02-17_0727

Programming Character Details Using Scratch and Makey Makey

The idea for this part of the lesson came from the Makey Makey Biography Bottles https://labz.makeymakey.com/cwists/preview/1506-biography-bottlesx. In the case of their character development, students programmed Scratch to tell a fact about their character upon the touch of each button.

The first step is to create the physical element, the character is glued onto a piece of cardstock (file folders work well for this). Holes are punched along the bottom – five for five facts and one for the Makey Makey ground wire. Large brass fasteners are inserted so that one of the fastener legs is bent to hold it in place and the other hangs over the edge. This permits the connection between the object and the Makey Makey.

IMG_3321

Students then program Scratch so that when different fasteners are touched, a different fact about that character is verbalized. Scratch 3.0 now has extensions for Makey Makey and Text to Speech – both which are used for this project.

Screen_Shot_2019-01-02_at_2.44.22_PM_large 2019-02-16_1826

They upload a picture of their character and choose five facts about their character – one fact for each of the Makey Makey keys – space, up arrow, down arrow, left arrow, and right arrow.  These facts are made via Text to Speech blocks. Students can even change accents and languages with these blocks.

IMG_3419

Now you are ready to connect the Makey Makey! Connect alligator clips to the legs of the brass fasteners that protrude from the conductive plate. It is a good idea to mark which button you want to trigger each key press. Connect the other end of each alligator clip to the matching input on the Makey Makey. Make sure you have a clip attached to the ground. Connect the Makey Makey to the computer. Run your Scratch program. Hold the ground clip (making sure you are touching the metal part) and lightly touch each button (https://labz.makeymakey.com/cwists/preview/1506-biography-bottlesx).

To see how it all works, watch the video below:

Written by Jackie Gerstein, Ed.D.

February 17, 2019 at 2:40 pm

Day of the Dead (Dia de los Muertos) Displays: A Maker Education Project

with one comment

IMG_2626

I have lived in Santa Fe, New Mexico for a few decades. One of my favorite things about living here is that my town celebrates and embraces Hispanic and Mexican cultural traditions. I have the privilege of working with gifted kids at two elementary schools with over 80% Hispanic students. For the past two years, I did Halloween Wars – based off of the Food Channel show. See Halloween Wars: An Interdisciplinary Lesson with a STEM, STEAM, Maker Education Focus for more about this. Because of the cultural heritage of my students and because I find the Day of the Dead holiday so intriguing and beautiful (the movie, Coco, helped bring its beauty to the masses), I decided to focus on having the students create Dia de los Muertos displays this year.

Standards Addressed

21st Century Skills

  • Using 21st century skills to understand and address global issues
  • Learning from and working collaboratively with individuals representing diverse cultures, religions and lifestyles in a spirit of mutual respect and open dialogue in personal, work and community contexts
  • Understanding  other nations and cultures, including the use of non-English languages
  • Create new and worthwhile ideas (both incremental and radical concepts)
  • Elaborate, refine, analyze and evaluate their own ideas in order to improve and maximize creative efforts
  • Create new and worthwhile ideas (both incremental and radical concepts)
  • Elaborate, refine, analyze and evaluate their own ideas in order to improve and maximize creative efforts

Next Generation Science Standards

  • Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
  • Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
  • Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Common Core State Standards – ELA

  • Write narratives to develop real or imagined experiences or events using effective technique, relevant descriptive details, and well-structured event sequences.

Getting Started – Gaining Attention

To introduce and show students the traditions related to Day of the Dead, they are shown the following videos:

. . . as well as given time to explore the Smithsonian Latino Center’s Theater of the Dead – http://latino.si.edu/dayofthedead/ which includes an interactive element to build their own alter or Ofrenda.

 

Writing a Story About Day of the Dead

Students write a story with a Day of the Dead theme. They are given the option to write it alone or with a partner. Here is an example from one of my 6th grade students:

 

Artifacts for the Day of the Dead Displays

Students make the following artifacts and then, in small groups of three students, decide if and how they want to use them in their Day of the Dead displays to reflect the stories they wrote.

Decorated Skulls with Paper Circuits for Eyes

Materials: skull outline and parallel circuit outline (one for each student), 5MM LED lights, copper tape, coin batteries, transparent tape, markers.

Students decorate their paper skulls and then make parallel paper circuits to light up the eyes of these skulls. I found a template of a skeleton skull online. I printed these out – one for each student. I then made an outline of a parallel circuit so that when connected and joined with the top part, the LEDs would show up as pupils of the decorated skull – see below.

IMG_2412.jpgIMG_2416

Students first cut out and decorate their skulls with markers. Images of decorated Day of the Dead skulls can be projected via a whiteboard so students can see examples. They then trace their cut out skulls onto the paper circuits template and cut that out. The bottom piece, containing the parallel circuit design, is then wired with the copper tape. The shorter copper tape is taped down from the battery placeholder to the end of its outline, so that the coin battery can be placed on top of that. For the longer piece of copper tape, about 1.5 inches is left at the end near the battery. This extra is folded onto itself so that after the battery is in place, this part of the copper tape can be taped on top of the battery. Having a folded over end piece makes it more manageable. Students should be reminded how to find the polarities of both the LEDs (the longer leg is positive) and the coin battery (it has a + on the top – that side with a little bit larger diameter). Students then tape their batteries and LEDs in place insuring that the positive legs of the LED lead to positive side of the battery and visa-versa. For more about paper circuits, see https://www.makerspaces.com/paper-circuits/. The LEDs are then poked through the eyes of the decorated skull. The top and bottom pieces are then stapled together.

Sugar Skulls

Materials: sugar, meringue powder, sugar skull molds

Sugar skull molds can be purchased from https://www.mexicansugarskull.com/sugar_skulls/sugar-skull-molds.html. Sugar skulls are incredibly easy to make – just combining the dry ingredients of sugar and meringue power and adding a little water so it becomes the consistency of dampened beach sand. More directions along with amounts can be found at https://www.mexicansugarskull.com/sugar_skulls/instructions.html. After waiting at least 24 hours for the skulls to harden, students can then decorate them using edible markers or royal icing.

IMG_2585.jpgIMG_2545.jpg

Skulls from Modeling Chocolate

Materials: white chocolate morsels, corn syrup.

This is another easy recipe to make (see http://artisancakecompany.com/recipe/how-to-make-perfect-modeling-chocolate/ for specific directions) although it is a bit tricky to get the modeling chocolate to the right consistency. Once the modeling chocolate is made, students sculpt it into 3D skulls.

IMG_2558.jpgIMG_2561.jpg

micro:bit Lit Skull

Materials: micro:bit (one for each team), heavy stock cardboard, (servos with jumper wires and alligator clips if movement is designed)

A micro:bit is mini-computer, half the size of a credit card equipped with 25 red LED lights that can flash messages. The micro:bit features an embedded compass, accelerometer, mobile, and web-based programming capabilities. It is compatible with a number of online code editors across a number of different languages (https://learn.sparkfun.com/tutorials/getting-started-with-the-microbit). For this activity, students cut out a skull with a window in the middle for the micro:bit (see below). They then use https://makecode.microbit.org/ to (1) create a message on the LEDs about Day of the Dead, and (2) code the servo to rotate the skull in a small arc from side to side (see https://sites.google.com/view/microbitofthings/7-motor-control/11-servo-control?authuser=0 for how to do this).

IMG_2532IMG_2629

Tissue Paper Marigolds

IMG_2566IMG_2404

Materials: yellow tissue paper, pipe cleaners.

The directions for how to make these can be found at https://tinkerlab.com/simple-paper-marigolds-dia-de-los-muertos/,

Edible Slime

Materials: sugar free Jello, starch

This is an easy recipe with the slime made by combining sugar free Jello, food starch, and water. Colors are determined by the flavor of the Jello – I like using lime for green slime and strawberry for red slime. For more information, visit https://thesoccermomblog.com/edible-silly-putty/

Miscellaneous Materials

Students are provided with core board and also given candy bones, candy gravestones, and chocolate animal crackers (to be crushed into dirt) so that these items along with the projects described above can be used for their displays, again reminding students that the displays should directly reflect their stories about Dead of the Day – Dia de los Muertos.

This slideshow requires JavaScript.

Student Reflection

Students were asked to randomly choose five cards from the deck of my Maker Reflection Cards to reflect on their experiences with this project. They were told that they could discard two of them but would need to answer three of them via a blog post, and I was totally elated when one asked if he could answer more – seven of them! Here are screenshots of his and another student’s reflections.

2018-11-07_17582018-11-07_1759

2018-11-07_1800

Written by Jackie Gerstein, Ed.D.

November 6, 2018 at 1:55 am

Integrating Maker Education into the Curriculum

with one comment

Rather than the maker experiences being an after school program, an add on activity, or an activity that is implemented when students have done their regular lessons work, it should be part of the regular, day-to-day curriculum. As noted in USC Rossier Online, “In order for your school and students to be fully invested in maker education, it has to be integrated into your curriculum, not squeezed in” (https://rossieronline.usc.edu/maker-education/sync-with-curriculum/).  Ayah Bdeir, who invented and runs littleBits, had this to say about integrating maker education into the curriculum:

It’s time for maker ed to move into the mainstream. Making should not be relegated to the times spent outside of class, e.g. lunch or after school. Nor should it only flourish in private schools, which don’t have to teach to standards. We need to work to show how making is a rigorous process that leads to valuable new technologies, products and experiences. Specifically, we need to tie maker projects to standards-based curriculum and show clearly the kinds of knowledge, skills and practices students learn as part of making (https://www.edsurge.com/news/2015-09-24-building-connections-between-maker-ed-and-standards)

Albemarle County Public School District is very intentional in their implementation of maker projects:

Maker projects can be created to support just about any subject area, from science to history to language arts. Maker education can be a tool for teaching the curriculum that you already have, At a glance, maker projects may appear disconnected from the curriculum. What may look like an arts and crafts activity, or just a bunch of kids playing with Legos, is actually a way to teach about ancient Rome or how to write a persuasive essay. (https://www.edutopia.org/practice/maker-education-reaching-all-learners)

To do this, though, the educator needs to approach his or her curriculum and lessons with a maker mindset. With this mindset, he or she figures out creative ways to integrate maker activities into existing lessons and instructional activities. The educator in these situations starts with the standards and objectives of their lessons, as they typically do with their regular lessons, and then designs and/or locates maker activities that fit the lesson. It simply becomes, “How can I add a making element to my lessons to reinforce concepts being learned?”

For subjects like science, this is a little easier as the labs that often accompany science lessons often have a hint of STEM or maker education. With a little tweaking, these labs can become more of a maker education type of activity. For example, if students are learning about circuits, they could wire cardboard model houses with lights and fans.  

For subjects like language arts, this integration is a little more challenging but with a little creativity, it is possible and exciting. An example is Tufts University Center for Engineering Education and Outreach’s program, Novel Engineering:

Novel Engineering is an innovative approach to integrate engineering and literacy in elementary and middle school. Students use existing classroom literature – stories, novels, and expository texts – as the basis for engineering design challenges that help them identify problems, design realistic solutions, and engage in the Engineering Design Process while reinforcing their literacy skills.

Example books that offer engineering or maker education challenges include:

The benefits of this type of curriculum integration include all those benefits described for maker education, in general, but also include:

  • Increased learner interest in and engagement with content rich lesson activities.
  • Lesson activities may become a gateway to content areas for learners who may not have been interested in that content area in the past. For example, making in language arts may spark a STEM interest for students who have previously only been interested in language arts; spark the interest of STEM-oriented students in language arts.

To help integrate maker education into the curriculum, I developed the following lesson plan template to assist teachers with this process.

Maker Lesson Plan

Example Maker Education Lesson Plan

Vision for this Lesson and for Student Learning (What is the overarching purpose of this lesson? How does making  enhance the lesson? Consider relevancy, authenticity, transfer to other life situations):

 

Student Voice  (What are the interests and needs of the students? How is their voice incorporated into the development of this lesson?):

 

Standards Addressed (Think cross-curriculum and 21st century skills; think process as well as content learnings):

 

 

 

 

 

  • ISTE Standards for Students (for detailed descriptions and sub-standards, see https://www.iste.org/standards/for-students):
    • Empowered Learner: Students leverage technology to take an active role in choosing, achieving and demonstrating competency in their learning goals, informed by the learning sciences.
    • Digital Citizen: Students recognize the rights, responsibilities and opportunities of living, learning and working in an interconnected digital world, and they act and model in ways that are safe, legal and ethical.
    • Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
    • Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
    • Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
    • Creative Communicator: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
    • Global Collaborator: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
  • 21st Century Skills (see for detailed descriptions at http://www.p21.org/our-work/p21-framework to add specifics):
    • Global Awareness: _________________________________________________
    • Financial, Economic: _______________________________________________
    • Business and Entrepreneurial Literacy: _________________________________
    • Civic Literacy: _____________________________________________________
    • Health Literacy: ___________________________________________________
    • Environmental Literacy: _____________________________________________
    • Creativity and Innovation: ___________________________________________
    • Critical Thinking and Problem Solving: _________________________________
    • Communication: ___________________________________________________
    • Collaboration: _____________________________________________________
    • Information Literacy: _______________________________________________
    • Media Literacy: ____________________________________________________  
    • ICT Literacy: ______________________________________________________
    • Flexibility and Adaptability: ___________________________________________
    • Initiative and Self-Direction: __________________________________________
    • Social and Cross-Cultural Skills: ______________________________________
    • Productivity and Accountability: _______________________________________
    • Leadership and Responsibility: _______________________________________

Lesson Challenge Statement – Framing the Experience: (How will the maker lesson be framed or frontloaded?  – What is the big challenge for this activity? What essential questions do you want learners to explore? What overarching concepts do you want learners to investigate? Is the challenge open and ill-defined so there are multiple opportunities for student interpretation, innovation, and creativity?) The maker lesson can be framed or frontloaded through:

  • Introducing Essential Questions
  • The Use of Scenarios
  • Specifying the Standards
  • Asking Questions Related To Personal Skills
  • Asking Questions to Help with Scaffolding and Sequencing the Activities
  • Asking Questions Related To Using Peer Support-Working Collaboratively

(More information about frontloading the maker experience can be found at https://usergeneratededucation.wordpress.com/2016/03/16/framing-and-frontloading-maker-activities/)

Required Prerequisite Knowledge and Skills:

Vocabulary: (What vocabulary do you want learners to learn and use?)

Getting Started: (What high impact activity will you do to get learners excited about or hooked into the upcoming lesson?)

  • Video: _________________________________________________________________
  • Hands-On Demonstration: _________________________________________________
  • AR/VR Simulation: _______________________________________________________
  • Online Virtual Simulation: _________________________________________________
  • Live Guest Speaker (in person or via Skype/Google Hangout): ____________________
  • Game (analog or digital): __________________________________________________
  • Group Discussion About the Learning Challenge

Tinkering and Exploration: (Will the learners benefit with some free-play tinkering with and exploring the materials?)

Skills and Knowledge Direct Instruction: (What, if any, knowledge and skills do you need to teach directly prior to the maker activity?)

Learner Planning Time: Time for learners to research and plan what they will do for the maker challenge.

Learner Creation Time: Time for the learners to create, to try out several iterations of their ideas, if needed.

Learner Sharing and Feedback Time: Time for learners to share what they are making with their peers; whose role then is to give feedback.

Documenting Learning and Reflection: How will learners document and reflect on their learning? Possible reflection questions include:

  • What new skills have you learned because of the maker experience?
  • What are the most important learning moments you take with you from this maker experience?
  • Would you do this or a similar maker project again? Why or why not?
  • Has this maker experience changed you? If yes, how?
  • Describe what you have learned about yourself as a result of your maker experience.
  • What would you like to change about your maker experience?
  • What were the benefits from you participating in this making activity?
  • What surprised you the most during your maker experience?
  • What did you do that seemed to be effective?
  • What did you do that seemed to be ineffective?
  • What were the most difficult parts of the maker experience? Why?
  • What were the most satisfying parts of the maker experience? Why?
  • What personal characteristics made this maker experience successful for you?
  • Describe an awareness about a personal characteristic that has been enhanced by your maker experience.
  • How does the maker experience relate to your long-term goals?
  • How have you been challenged during the maker experience?
  • How do you feel about what you made? What parts of it do you particularly like? Dislike?
  • What lessons can you learn from the maker experience?
  • What positives can you take away from the maker experience?
  • How can you apply what you learned from maker experience in your life?
  • What advice would you give to someone else working on the maker activities?
  • What did you learn through this experience and how can you use it in the future?
  • Looking back on the maker experience, what two things stand out to you the most and why?

(For more on reflecting on the maker experience, see https://usergeneratededucation.wordpress.com/2018/03/10/reflecting-on-maker-experiences-with-reflection-cards/.) 

Assessment: How will learners be assessed? (This is especially important in a school setting where grades and accountability are expected.)

  • Rubric – Based on Standards and Objectives
    • Teacher Generated
    • Student Generated
  • Portfolio Artifact
    • Submitted to a Blog
    • Submitted to a web platform like Seesaw
  • Peer Assessments

Sharing Out Findings: How will learners share out what they learned with a larger maker education community? Adam Savage of Mythbusters fame stated: Sharing is s a vital aspect of maker culture that is intrinsic to the underlying ethos of what it means to be a maker and by extension, in my opinion, a human being (https://boingboing.net/2018/05/23/adam-savage-at-maker-faire-th.html).

  • Use of Social Media?
  • Presentations to Local Students and Community Members?
  • News Coverage?
  • Teaching Others?

 

Written by Jackie Gerstein, Ed.D.

July 6, 2018 at 12:40 am

The Myth of Neutral Makerspaces

leave a comment »

3bbdab24-cc58-4377-a8d

Recently, I attended the Nation of Makers Conference whose theme was intentional inclusion. The single comment from the conference that stood out for me was:

Before we consider intentional inclusion, we need to consider and explore unintentional exclusion.

When I think about unintentional exclusion, I think about how implicit biases are present and strong in every human being.

An implicit bias, or implicit stereotype, is the unconscious attribution of particular qualities to a member of a certain social group. Implicit stereotypes are influenced by experience, and are based on learned associations between various qualities and social categories, including race or gender. Individuals’ perceptions and behaviors can be affected by implicit stereotypes, even without the individuals’ intention or awareness. Implicit bias is an aspect of implicit social cognition, the phenomenon that perceptions, attitudes, and stereotypes operate without conscious intention. (https://en.wikipedia.org/wiki/Implicit_stereotype)

Recent research sadly indicates that implicit bias is pervasive and insidious in makerspaces . . .

After a 10-state tour through educational makerspaces (both in-school and off-site facilities with an educational penchant), researchers from Drexel University’s ExCITe Center found a non-inclusive culture with a lack of attention to implicit biases.

Per the study, student participation rates change dramatically from K-8 (where there’s nearly equal participation by gender) to high school (where male students outnumber females by a factor of three). Program leaders and instructors remain predominantly male, and a language analysis of recruiting and instruction materials revealed evidence of implicit bias.

“Implicit bias is pervasive and insidious,” the report states. “Our evidence is specific to gender, but there may be other forms. We recommend open and frank discussions that raise awareness of implicit bias, particularly in language, internal and external communications, and design curricula that may lead to bias.” The most urgent recommendation, according to Kim, is to create concerted efforts around recruitment and language that combat existing bias in gender, race and beyond. (K-12 makerspaces lack inclusive culture, Drexel study says)

Because these stereotypical biases are often implicit and unconscious, it makes them especially resistant to awareness, exploration and modification. Due to this, I don’t believe that a truly neutral makerspace is possible but I do believe efforts should be made towards that goal or end.

Liberatory Consciousness

Liberatory Consciousness was a practice promoted and used during the Nation of Maker pre-conference and threaded through the inclusion track of the conference.

Liberatory consciousness is a force that enables an individual to live his or her life in oppressive systems and institutions with awareness and intentionality.

We understand that inequity, racial and otherwise, is the result of cumulative disadvantage built into social institutions, via law, policy, and everyday practice.

We work from an intersectional perspective, which believes that organizations and communities thrive when they build cultures that are inclusive of wide-ranging ethnic, racial, gender, sexual, religious, and national identities and abilities.

We understand that the targets of oppression are required  to be at the center of efforts to transform oppression. http://desireeadaway.com/awareness-analysis-action/ 

Philosophically, these tenets, in my perspective, are pretty amazing and right on target. The difficulty comes in operationalizing them – making them into concrete practices for makerspaces.

Developing Best Practices for Makerspaces

After the conference, I did an extensive search on codes of conduct and inclusion for makerspaces. I expected to find a decent number of articles on this topic, but became a bit dismayed on how few I found. One article that did stand out for me was by Sylvia Martinez’s Edsurge piece, Making for All: How to Build an Inclusive Makerspace (but it’s from 2015). Some of practices she recommends for creating a more inclusive makerspace:

  • Empower students not just to be passive objects of the lessons, but to include them as allies and advocates for making things that matter to them.
  • Culturally responsive, situated, and relevant doesn’t mean asking students to write hip hop lyrics about the scientific method. But it doesn’t mean ignoring hip hop either. Seeing cultural practices in a maker light can open doors and blur the lines between teachers and learners.
  • Sensitivity to surroundings. Research shows that girls react to surroundings that reflect stereotypical “hacker” culture by denying that they are interested in science and engineering. If you aren’t sure what vibe your classroom or makerspace is communicating, ask some kids.
  • Reduce competition. Both overt contests and more subtle competition, like competition caused by a lack of adequate materials and tools, can reduce participation of girls. It can also be a barrier for beginners and students who don’t see themselves as “technical.” The competition aspect raises the stakes to a level that is too risky for students to jump in and try something they may actually enjoy.
  • Don’t advantage one kind of building over another. Robots are cool, but the same technologies of micro-controllers, sensors, motors, and lights could make smart clothes, a useful invention for an elderly aunt, or better still, something no one has thought of before. Provide incentives, multiple on-ramps, praise, and glory for all kinds of making.

Written by Jackie Gerstein, Ed.D.

July 1, 2018 at 11:35 pm

Assessing Maker Education Projects

leave a comment »

assessment

Institutionalized education has given assessment a bad reputation; often leaves a sour taste in the mouths of many teachers, students, and laypeople. This is primarily due to the testing movement, the push towards using student assessment in the form of tests as a measure of student, teacher, principal, and school accountability.

Educators should be clear about why they include assessment in their instruction; be strategic and intentional in its use. For me, assessment really should be about informing the learner about his or her performance so that increased learning and future improvement result for that learner.

Assessment is the process of gathering and discussing information from multiple and diverse sources in order to develop a deep understanding of what students know, understand, and can do with their knowledge as a result of their educational experiences; the process culminates when assessment results are used to improve subsequent learning. (Learner-Centered Assessment on College Campuses: Shifting the Focus from Teaching to Learning)

As Hattie, Fry, and Fischer note in Developing “Assessment Capable” Learners:

If we want students to take charge of their learning, we can’t keep relegating them to a passive role in the assessment process.

When we leave students out of assessment considerations, it is akin to fighting with one arm tied behind our backs. We fail to leverage the best asset we have: the learners themselves. What might happen if students were instead at the heart of the assessment process, using goals and results to fuel their own learning? ((http://www.ascd.org/publications/educational-leadership/feb18/vol75/num05/Developing-%C2%A3Assessment-Capable%C2%A3-Learners.aspx)

Maker Education and Assessment

As maker education infiltrates more formal educational settings, there’s been and will continue to be efforts to include assessment as part of its implementation. It is important, though, to keep in mind the characteristics of maker education and the role assessment has within it.

Making innately provides evidence of learning. The artifact that results, in addition to the process that a student works through, provides a wealth of evidence, indicators, and data of their learning. Overall, though, assessing making comes back to the original (and difficult) question of what learning outcomes we’re seeking. Assessment is critical for understanding the scope and impact of learning, as well as the associated teaching, environment, culture, and content. (https://www.edutopia.org/blog/assessment-in-making-stephanie-chang-chad-ratliff)

Being a teacher, you’re constantly faced with having to assess student learning,” said Simon Mangiaracina, a sixth-grade STEM teacher. “We’re so used to grading work and giving a written assessment or a test. When you’re involved in maker education it should be more dynamic than that.” Part of the difficulty is that, in evaluating a maker project, teachers don’t want to undo all of the thinking that went into it. For instance, one of the most important lessons maker education can teach is not to fear failure and to take mistakes and let them inform an iterative design process — a research-informed variation of “guess and check” where students learn a process through a loop of feedback and evaluation.  (https://rossieronline.usc.edu/maker-education/7-assessment-types/  from USC Rossier’s online master’s in teaching program)

I have my gifted students do lots maker activities where I meet with the 2nd through 6th graders for 3 to 5 hours a week. Since I do not have to grade them (not in the traditional sense as I have to write quarterly progress reports), I don’t have to give them any tests (phew!). I do ask them, though, to assess their work. I believe as Dale Dougherty, founder of MAKE Magazine, does:

[Making] is intrinsic, whereas a lot of traditional, formal school is motivated by extrinsic measures, such as grades. Shifting that control from the teacher or the expert to the participant to the non-expert, the student, that’s the real big difference here. Dale Dougherty

Christa Flores in Alternative Assessments and Feedback in a MakerEd Classroom stated:

In a maker classroom, learning is inherently experiential and can be very student driven; assessment and feedback needs to look different than a paper test to accurately document and encourage learning. Regardless of how you feel about standardized testing, making seems to be immune to it for the time being (one reason some schools skip the assessment piece and still bill making as an enrichment program). Encouragingly, the lack of any obvious right answers about how to measure and gauge success and failure in a maker classroom, as well as the ambiguity about how making in education fits into the common standards or college readiness debate, has not stopped schools from marching forward in creating their own maker programs.

If the shift of control is given to the students within maker education settings, then it follows that the students should also be in charge of their assessments. One of the goals of maker education should be self-determined learning. This should include learners engaging in their own personal and personalized form of assessment.

Student self-assessment involves students in evaluating their own work and learning progress.

Self-assessment is a valuable learning tool as well as part of an assessment process.  Through self-assessment, students can:

  • identify their own skill gaps, where their knowledge is weak
  • see where to focus their attention in learning
  • set realistic goals
  • revise their work
  • track their own progress
  • if online, decide when to move to the next level of the course

This process helps students stay involved and motivated and encourages self-reflection and responsibility for their learning. (https://teachingcommons.stanford.edu/resources/teaching/evaluating-students/assessing-student-learning/student-self-assessment)

Witnessing the wonders of making in education teaches us to foster an environment of growth and self-actualization by using forms of assessment that challenge our students to critique both their own work and the work of their peers. This is where the role of self-assessment begins to shine a light. Self-assessment can facilitate deeper learning as it requires students to play a more active role in the cause of their success and failures as well as practice a critical look at quality. (Role and Rigor of Self-Assessment in Maker Education by Christa Flores in http://fablearn.stanford.edu/fellows/sites/default/files/Blikstein_Martinez_Pang-Meaningful_Making_book.pdf)

Documenting Learning

To engage in the self-assessment process of their maker activities, I ask learners to document their learning.

We need to integrate documenting practices as part of making activities as well as designing, tinkering, digital fabrication, and programming in order to enable students to document their own learning process and experiment with the beauty of building shared knowledge. Documentation is a hard task even for adults, but it is not so hard if you design a reason and a consistent expectation that everyone will collect and organize the things they will share. (Documenting a Project Using a “Failures Box” by Susanna Tesconi in http://fablearn.stanford.edu/fellows/sites/default/files/Blikstein_Martinez_Pang-Meaningful_Making_book.pdf)

Documenting their learning can include one or a combination of the following methods:

  • Taking notes
  • Talking to a fellow learner or two.
  • Making sketches
  • Taking photos
  • Doing audio recordings
  • Making videos

(For more information, see Documenting Learning https://usergeneratededucation.wordpress.com/2016/04/08/documenting-learning/)

The folks at Digital Promise have the following message for maker educators regarding documentation:

Make the documentation an organic and expected part of the process. When documentation feels like it is added without reason, students struggle to engage with the documentation process. Help students consider how in-process documentation and reflection can help them adapt and improve the project they are working on. Help them see the value of taking time to stop and think.(http://global.digitalpromise.org/teachers-guide/documenting-maker-projects/)

Documenting learning during the making process serves several purposes related to assessment:

  1. It acts as ongoing and formative assessment.
  2. It gives learners the message that the process of learning is as important as the products of learning, so that their processes as well as their products are assessed. (For more information on the process of learning, see Focusing on the Process: Letting Go of Product Expectations https://usergeneratededucation.wordpress.com/2017/12/17/focusing-on-the-process-letting-go-of-product-expectations/)

Maker Project Reflections

Because many students haven’t had the experience of reflection and self-assessment, I ease them into this process.  With my gifted students, I ask them to blog their reflections after almost all of their maker education activities. They take pictures of their makes, and I ask them to discuss what they thought they did especially well, and what they would do differently in a similar future make. Here are some examples:

2018-05-03_1259.png

2018-05-03_1257.png

2018-05-03_1256.png

Teacher and Peer Feedback

The learners’ peers and their educators can view their products, documented learning, and reflections in order to provide additional feedback. A culture of learning is established within the maker education community in that teacher and peer feedback is offered and accepted on an ongoing basis. With this type of openness and transparency of the learning process, this feedback not only benefits that individual student but also the other students as they learn from that student what worked and didn’t work which in turn can help them with their own makes.

The Use of Assessment Rubrics

As a final thought, there has been some thoughts and efforts into using rubrics as assessment tools. Here is one developed by Lisa Yokana and discussed in Creating an Authentic Maker Education Rubric 

edutopia-yokana-maker-rubric.jpg

I think rubrics, such as this, can be of value in assessing student work and/or having them assess their own work, but I prefer more open ended forms of assessment so the learners can but more of their selves into the process.

Written by Jackie Gerstein, Ed.D.

May 5, 2018 at 10:01 pm

%d bloggers like this: