User Generated Education

Education as it should be – passion-based.

Simple and Rube Goldberg Machines: A Maker Education, STEAM Lesson

leave a comment »

Recently I facilitated a simple-machines-leading-into-Rube-Goldberg-machines lesson with my gifted elementary students.

As I’ve discussed in past blog posts, I use several criteria to guide my lesson design:

  • Instructional challenges are hands-on and naturally engaging for learners.
  • There is a game-like atmosphere. There are elements of play, leveling up, and a sense of mastery or achievement during the instructional activities.
  • The challenges are designed to be novel and create excitement and joy for learners.
  • There is a healthy competition where the kids have to compete against one another.
  • Learners don’t need to be graded about their performances as built-in consequences are natural.
  • There is a natural building of social emotional skills – tolerance for frustration, expression of needs, working as a team.
  • Lessons are interdisciplinary (like life) where multiple, cross-curricular content areas are integrated into the instructional activities.
  • Lessons are designed to get learners interested in and excited about a broad  array of topics especially in the areas of science, engineering, math, language arts, and the arts.

The lesson activities and sequence went as follows . . .

Simple Machines

img_6587img_6584

  • To conclude the simple machines component, learners were taught about Haikus and asked to write Haikus about simple machines to be posted on their Kidblogs.

2016-11-28_19262016-11-28_1928

Rube Goldberg Machines

  • Learners were shown several Rube Goldberg machines posted on Youtube.

img_6600img_6575

  • Learners were given a worksheet that contained several examples of Rube Goldberg Machines and asked to sketch their own cartoon versions.

This slideshow requires JavaScript.

Written by Jackie Gerstein, Ed.D.

November 29, 2016 at 5:07 am

What are the characteristics of high performing schools?

leave a comment »

I am in the unique position of having several types of education jobs. I teach online graduate courses in educational technology to in-service teachers. I am a cohort facilitator for student teachers; and I am a part-time gifted teacher of elementary students at two different elementary schools that serve Kindergarten through 6th grade students. Out of the 16 elementary schools in my town, these two schools have some of the lowest end-of-year standardized test scores in the entire district; are composed of 85% to 90% Hispanic students; have a high percentage of English Language Learners; and all students on free or reduced lunch. These statistics present a dire picture, don’t they?

I tell my student teachers that when they enter new schools for possible employment, they should be able to see and feel the culture of the school almost immediately upon entering the front doors. Because of this belief, I decided to do a photo essay of the artifacts found on the hallway walls at the schools where I teach:

This slideshow requires JavaScript.

Because of the variety of my jobs as well as being an active reader and contributor to social media, I do a lot of thinking and reading about the qualities of high performing schools. Again, the data shows that I work at very low performing schools, but how are intangibles measured? How are the following characteristics, which I see, hear, and feel at both of my schools, measured and quantified?

  • A positive school climate
  • A safe school climate
  • Dedicated teachers who love teaching and their students
  • Creative teachers
  • Students enjoyment of being at school and in learning
  • Student creativity and imagination
  • Lots of laughing and smiling students
  • The arts naturally integrated into content area learning
  • School walls filled with beautiful student artifacts

I wholeheartedly believe I am teaching in high performing schools.

Written by Jackie Gerstein, Ed.D.

November 17, 2016 at 1:24 am

Halloween Wars: An Interdisciplinary Lesson with a STEM, STEAM, Maker Education Focus

leave a comment »

For Halloween 2016, I did a version of Halloween Wars (a Food Network show) with my two classes of gifted elementary learners. I am sharing this lesson through my blog post as it reinforces how I approach lesson planning and teaching.

Background Information

Principles that drive my instructional approach. regardless of theme, include:

  • Instructional challenges are hands-on and naturally engaging for learners.
  • There is a game-like atmosphere. There are elements of play, leveling up, and a sense of mastery or achievement during the instructional activities.
  • The challenges are designed to be novel and create excitement and joy for learners.
  • There is a healthy competition where the kids have to compete against one another.
  • Learners don’t need to be graded about their performances as built-in consequences are natural.
  • There is a natural building of social emotional skills – tolerance for frustration, expression of needs, working as a team.
  • Lessons are interdisciplinary (like life) where multiple, cross-curricular content areas are integrated into the instructional activities.

These have been further discussed in A Model of Good Teaching?

goodteaching

Halloween Wars Lesson

For this Halloween Wars lesson, the goals included the following:

  • To work in a small group to create a Halloween scene using food items, cooked goods, LED lights, and miscellaneous materials.
  • To work as a small group to craft a story about their scene.
  • To introduce and reinforce ideas, concepts, and skills associated with maker education, STEM, and STEM.

Standards addressed during this lesson included:

  • Generate and conceptualize artistic ideas and work. (National Core Arts Standards)
  • Exercise flexibility and willingness to be helpful in making necessary compromises to accomplish a common goal; and assume shared responsibility for collaborative work, and value the individual contributions made by each team member. (21st Century Skills)
  • Apply scientific ideas to design, test,and refine a device that converts energy from one form to another. (Next Generation Science Standards)
  • Solve problems involving measurement and conversion of measurements. (CCSS.Math)
  • Write narratives to develop real or imagined experiences or events using effective technique, descriptive details, and clear event sequences. (CCSS.ELA-Literacy.W.5.3)
  • Publish or present content that customizes the message and medium for their intended audiences. (ISTE NETS for Students)

Time Frame: 3 to 4 hours

Procedures:

  • Learners were introduced to the lesson through the following presentation –

  • Learners were split into groups of 3 or 4 members, shown their materials, asked to come up with a team name, and sketch their designs.

img_6414img_6473

  • In their small groups, learners needed to work together cooperatively to make their display scenes using the materials provided.

img_6485img_6483

  • Learners made sugar cookies using a recipe projected on the Smartboard. They were asked to cut the recipe in half reinforcing math skills.

img_6437img_6443

  • LED lights, which learners connected to coin batteries, were placed decorated ping-pong balls and their carved pumpkin.

img_6453img_6501

img_6454

  • Finally, learners, in their small groups, worked together on a shared Google doc to compose their story. The story was displayed on the Smartboard and read aloud. One member made editing changes to grammar and spelling based on suggestions by their classmates. (This strategy is further discussed in Teaching Grammar in Context.) Here is one student group’s example:

Written by Jackie Gerstein, Ed.D.

October 31, 2016 at 12:11 am

A Fuller Framework for Making in Maker Education

with 3 comments

Background Information

I recently learned, for the first time, about Aristotle’s belief that there were three basic activities of humans: theoria (thinking), poiesis (making), and praxis (doing). Corresponding to these activities were three types of knowledge: theoretical, the end goal being truth; poietical, the end goal being production; and practical, the end goal being action (https://en.wikipedia.org/wiki/Praxis_(process)).

The Greek theoria, from which the English word “theory” is derived, meant “contemplation, speculation, a looking at, things looked at”.  The word theoria is derived from a verb meaning to look, or to see: for the Greeks, knowing was a kind of seeing, a sort of intellectual seeing (https://en.wikipedia.org/wiki/Theoria).

Poïesis is etymologically derived from the ancient Greek term ποιέω, which means “to make” (https://en.wikipedia.org/wiki/Poiesis).

Praxis (From ancient Greek: πρᾶξις) is the process by which a theory, lesson, or skill is enacted, embodied, or realized (https://en.wikipedia.org/wiki/Praxis_(process)). “Praxis” may also refer to the act of engaging, applying, exercising, realizing, or practicing ideas. Praxis may be described as a form of critical thinking and comprises the combination of reflection and action. Paulo Freire defines praxis “reflection and action directed at the structures to be transformed.”(https://en.wikipedia.org/wiki/Praxis_(process))

Implementing a Broader Framework of Making in Maker Education

All of this led me to think about how this would translate into a full spectrum of making in the context of maker educator. Having such a framework would help insure that learning from the making experience is more robust, not left up to chance. I believe a fuller spectrum or framework would including the following elements:

  • Play, Tinkering, Experimentation – This is uncensored, boundaryless, whimsical making. It can be considered free play.  This, in my mind, is the first part of of Poïesis which translated from Greek “to make”.  How this translates into practice is by providing learners with lots of making materials; and telling them to just dive in and play hard with those materials.
  • Framing or Frontloading the Making Experience – This is the introducing the making experience for more mindful and intentional making. It helps both the educators and learners to set purpose and intention for the making activity prior to actually doing it. This is discussed in Framing and Frontloading Maker Activities where I go in more detail how to frontload or frame the maker activities:
    • Using and Reviewing Essential Questions
    • Using Scenarios
    • Specifying Standards
    • Asking Questions Related To Personal Skills
    • Asking Questions to Help with Scaffolding and Sequencing the Activities
    • Asking Questions Related To Using Peer Support-Working Collaboratively
  • Mindful and Intentional Making – Once there is a familiarity with the making materials and processes,  making can become more mindful and intentional.This is the second part of poisis or the making process. Making becomes more goal-oriented, focused, and more results or product oriented (although process is still important).
  • Observing and Reflecting Upon Results – This is the theoria or thinking part of the process. After making, it is when makers step back away from their making to observe and reflect on their processes and results.”Being able to reflect is a skill to be learned, a habit to develop. Reflection requires metacognition (thinking about your thinking), articulation of that thinking and the ability to make connections (past, present, future, outliers, relevant information, etc.)” (Amplifying Reflection).
  • Critical Awareness and Analysis –  This is the praxis, the critical thinking component that combines reflection and action. It takes reflection to a deeper level by dissecting the making process to analyze what worked and didn’t work which, in turn, will inform future makes. This critical analysis should directly and strongly influence future making experiences – the action part.
  • Sharing to Elicit Broader Connections and Change – Given today’s ease of sharing via the Internet and social media, the action part of praxis has been expanded, in this framework, to include sharing out one’s makes, observations, reflections, and critical analyses to a broader audience. This can occur by writing about the making process, and/or by doing a photo essay, video, podcast to share via social media. By doing so, others can benefit from one’s make.

a-framework-for_17172814_ad53e9ef20a574d3e44d93f984241673d1c3da24

Written by Jackie Gerstein, Ed.D.

October 23, 2016 at 6:19 pm

Teaching Elementary-Level Learners About the Brain

with 2 comments

Judy Willis in How to Teach Students About the Brain writes:

If we want to empower students, we must show them how they can control their own cognitive and emotional health and their own learning. Teaching students how the brain operates is a huge step. Even young students can learn strategies for priming their brains to learn more efficiently.

Teaching students the mechanism behind how the brain operates and teaching them approaches they can use to work that mechanism more effectively helps students believe they can create a more intelligent, creative, and powerful brain. It also shows them that striving for emotional awareness and physical health is part of keeping an optimally functioning brain. Thus, instruction in brain function will lead to healthier learners as well as wiser ones.

Here is a run down of the learning activities I did with my gifted elementary students to teach them about their brains:

Introduction to the Brain

  • Learners played a concentration brain game I created. Cards were created that had parts of the brain images on one of the paired cards and the definitions on the other. Games cards included: cerebral cortex, frontal cortex, parietal lobe, temporal lobe, occipital lobe, cerebellum, limbic system, hypothalamus, amygdala, neuron, axon, dendrite, neurotransmitters, synapse. Students were asked to read aloud the definitions when they match a pair. An alternative is to play Neuro-Jeopardy found at http://faculty.washington.edu/chudler/jeopardy.html.

img_6319img_6323

Learning about the Brain Lobes

  • Learners completed a jigsaw puzzle I created about the brain lobes and their functions.

img_6303img_6309

  • Using the Smartboard, the interactive website, https://www.koshland-science-museum.org/explore-the-science/interactives/brain-anatomy, about the brain lobes was shown to the learners.
  • Using this website and brain anatomy posters on the wall as references, learners, in small groups, created their own model brains using dough (that they made themselves) for the lobes and sticky notes/toothpicks to label the lobes and their functions.

img_6341IMG_6353.jpg

img_6351img_6348

Learning About Neurons

  • Neurons were introduced to the learners through this Neuroscience for Kids webpage – https://faculty.washington.edu/chudler/synapse.html
  • Learners made their own neurons out of licorice, fruit roll ups, and min-Reese’s cups on top of wax paper and labeled the parts of the neuron on their wax paper. This was inspired by the Neuroscience for Kids webpage – http://faculty.washington.edu/chudler/chmodel.html.  Learners were then asked to show how their neurons would correctly connect to one another as they would be in the brain.

img_6361img_6377

stagimg_6397

Finishing Up with a Creative Writing Activity About the Brain

2016-10-21_1931

2016-10-21_1933

2016-10-21_1925

 

 

 

 

Written by Jackie Gerstein, Ed.D.

October 22, 2016 at 1:44 am

Teaching Grammar-In-Context

with 4 comments

Archaic Ways of Teaching Grammar

We construct grammatically correct sentences or correct our mistakes by intuitively applying the rules that govern English syntax. If, instead, we had to apply those rules consciously, they would only get in our way, making it impossible for us to speak or write at all. To construct a simple two-word sentence, such as “He dreams,” requires the application of at least seven grammar rules. Imagine trying to apply them consciously following the rules of English grammar.

Over the years, the teaching of grammar has continued to be prominent in English and foreign language instruction, leaving less class time or student energy for students to speak, read, or write in those languages.  As early as 1906, studies were undertaken that attempted to show the relationship between knowledge of school-taught grammar and language skills. Since then, hundreds of such studies have produced some clear and unequivocal conclusions: The teaching of formal grammar does not help a student’s ability to speak, to write, to think, or to learn languages.

It is important for educators to know that, among recent research studies, not one justifies teaching grammar to help students write better.  Although we accept the fact that social, economic, and political forces influence education in many areas, we ought not to allow such forces to outweigh knowledge and reason in determining the school curriculum. (Is Teaching Grammar Necessary?)

Learning Needs a Context

I often discuss and blog about teaching content within a context, that learning needs a context. . .

How often have students been asked to memorize mass amounts of facts – historical dates, vocabulary words, science facts; get tested on them, just to forget almost all those memorized facts a week or two later? Given that is this learning experience is more common than not, why do educators insist on continuing this archaic and ineffective instructional practice?

The visual image I use to describe this is that there are all of these unconnected facts floating around in the learner’s brain. Since they have nothing to connect to, they end up flying away. This is especially true for abstract concepts including memorizing grammar rules.

floating facts

The key to increased understanding is providing a context for the facts and the rules. The context becomes the glue to increase the stickiness, the longevity of long term memory of those facts and rules. This is especially true for abstract concepts such as grammar rules. These concepts need something concrete with which to attach.context

Providing a Context for Grammar Instruction

I teach gifted elementary level classes with a good portion of the students being English Language Learners. This translates into ELA grammar making even less sense for them than for English only learners. I do a lot of maker education, STEM (science, technology, engineering, and mathematics), and STEAM (adding arts to it) activities with them, and ask them to document their learning through taking photos and blogging about those activities using their Chromebooks. Because of the article about grammar and talking with the school’s literacy coach, I decided to bring grammar-in-context into my classrooms. How I’ve done this is through projecting individual blog posts onto the Smartboard. The writer of the blog opens his or her blog post in an editing mode. Another learner reads the blog post out loud. The rest of the learners make suggestions for improvement as it is read out loud. I help guide them asking questions like:

  • Does that sound right?
  • Is that the correct verb for that noun?
  • What tense should that verb be?
  • What type of punctuation in the different pauses?
  • Is that spelling correct?
  • Is that possessive? If so, what is the punctuation?

. . . and again, these questions and the suggested edits are done in the context of the individual learners’ blog posts that have already been composed.

Here is an example of one such blog prior to editing:

2016-10-14_1339.png

. . . and here is the edited version:

2016-10-14_1340.png

It is not perfect but, as can be seen, is much better.

Some of my observations from this process that I noted includes:

  • Learners eagerly volunteer to have their blog posts reviewed. First, they really enjoy having their posts read out loud. Second, I believe this is also due to the focus being on improving their means to communicate better not for a grade.
  • The learners know that their blogs are viewed by their own classmates and their sister school (I teach gifted education at two schools and have opened my Kidblog to both schools to view one another’s posts). They have authentic audiences and what to present their best selves.
  • As it becomes a group exercise, the other class members seem to enjoy the challenge and become engaged in offering corrections and improvements.
  • To keep up the motivation and make it manageable, I only do 2 or 3 during any giving sitting.

 

 

 

Written by Jackie Gerstein, Ed.D.

October 14, 2016 at 9:26 pm

Introducing Design Thinking to Elementary Learners

with 2 comments

Design thinking is an approach to learning that includes considering real-world problems, research, analysis, conceiving original ideas, lots of experimentation, and sometimes building things by hand. The projects teach students how to make a stable product, use tools, think about the needs of another, solve challenges, overcome setbacks and stay motivated on a long-term problem. The projects also teach students to build on the ideas of others, vet sources, generate questions, deeply analyze topics, and think creatively and analytically. Many of those same qualities are goals of the Common Core State Standards. (What Does ‘Design Thinking’ Look Like in School?)

I use the following activities to introduce elementary students to the design thinking process. The ultimate goal is for the learners to work on their own, self-selected problems in which they will apply the design thinking.

Introducing the general design process to elementary student occurs through showing the following video about the engineering process:

The Task: Build the Highest Tower

The Goal

The goal of this activity is to have learners practice a simple version of the engineering design process.

slide_10

Source: http://slideplayer.com/slide/9058715/

The Task

In teams of 3 to 4 members, learners are asked to build the highest tower out of 50 small marshmallows and 50 spaghetti noodles.

The Process

As a team, ask learners to sketch out possible solutions

Design thinking requires that no matter how obvious the solution may seem, many solutions be created for consideration. And created in a way that allows them to be judged equally as possible answers. Looking at a problem from more than one perspective always yields richer results. (Design thinking… what is that?)

img_5437img_5462

Prototype and test ideas

After brainstorming and sketching possible designs, learners begin the process of building this spaghetti-marshmallow towers.

img_5440img_5453

Revisit the design process

After some time prototyping, a time-out is called so learners can reflect on what is working and not working. Learners are encouraged to see what the other groups have created to spark new ideas.

Design thinking allows their potential to be realized by creating an environment conducive to growth and experimentation, and the making of mistakes in order to achieve out of the ordinary results. At this stage many times options will need to be combined and smaller ideas integrated into the selected schemes that make it through. (Design thinking… what is that?)

Return to the building and testing process

Next Step: Introduction to Empathy

As a design thinker, the problems you are trying to solve are rarely your own—they are those of a particular group of people; in order to design for them, you must gain empathy for who they are and what is important to them. As a design thinker, the problems you are trying to solve are rarely your own—they are those of a particular group of people; in order to design for them, you must gain empathy for who they are and what is important to them. (from the d-school)

The second part of the introducing elementary-level learners to the design process is introducing them to empathy and its connection to the design process.

The Goal

To have learners discover and explore the elements of empathy as it relates to design.

The Process

Introduction to Empathy

For younger kids (but even the 5th and 6th graders seemed to enjoy it):

Warm-Up: Great Egg Drop

Preparation and introduction:

Learners are asked to draw a face on an egg and are given the following directions: “Pretend the egg is alive – has thoughts, feelings, and opinions. Your job is to use the straws to create a protective covering for the egg so it will not crack when dropped from a 10 foot height. Address the following questions prior to building your egg structure:

  • What do you think your egg is feeling about his or her upcoming drop?
  • What do you need to make your egg’s journey less stressful?
  • What can you do to reassure your egg that everything will work out okay?
  • What forces do you need to consider in order to keep your egg safe? Consider gravity, rate of descent, impact.

Example Responses from a 6th grade group:

2016-09-28_1905

The Task

To begin, assemble groups of 4 or 5 and give each group various materials for building (e.g. 5-20 straws, a roll of masking tape, one fresh egg, newspaper, etc.)  Instruct the participants and give them a set amount of time (e.g. 30 minutes) to complete building a structure, with the egg inside in which the structures are dropped from at least 10 feet in elevation and then inspected to see if the eggs survived. The winners are the groups that were successful in protecting the egg. (http://eggdropproject.org/ and  http://www.group-games.com/team-building/great-egg-drop.html)

img_5646img_5713

Delving Deeper: An Environment for a Gamibot

Lead learners through the following steps:

img_5723img_5731

  • Develop the Backstory for the Gamibot: Report via a Blog Post or Voki
  • Create an Environment for the Gamibot Out of Natural and Art Materials. Make sure it fits your Gamibot’s backstory creating an environment that is tailored for your Gamibot. Be ready to explain why it fits your Gamibot.

2016-09-28_1947

2016-09-28_1941

Squishy Circuits: Designing for a Human Being

The Goal

To put everything together by creating a design for another human being.

The Task

Learners design a squishy circuit product based on the specifications given to them by a classmate – the client from all of the available colors of Play-Doh (conductive clay), modeling clay (insulating clay), and LED lights.

The Process

Lead learners through the following steps:

img_5914IMG_5916.jpg

  • As partners, decide who will be the designer and who will have a product designed for him or her – the client.
  • As a designer, find out the following from the client:
    • What do you want me to build?
    • What size do you want it to be? It needs to be scaled in some way. (Note: learners are given graph flip chart paper with 1″ squares and taught about scale, e.g., 1″ = 1′, 1″ = 2′, etc.)
    • What color Play-Doh? Modeling clay? LED lights.
  • Construct the design while your client gives you feedback. The client is not permitted to touch the Squishy Circuit during the design process.
  • After completion, roles are switched.

2016-10-09_1636

Written by Jackie Gerstein, Ed.D.

September 25, 2016 at 2:30 pm

%d bloggers like this: